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Abstract—We propose a nearby traffic flow modelling solu-
tion based on built-in Cyber-Physical System (CPS) sensors of
autonomous vehicles. Our goal is to enhance the offline route
planning and driving decision adjustment based on the first-hand
traffic information, especially during poor Internet connection
moments. Specifically, our model helps to select the optimal speed
on a road, the optimal distance for timing to brake, and the safe
distance from other vehicles to keep. Moreover, our model can
also assist neighboring autonomous vehicles by communicating
required information through Ad-Hoc network communications
or through a centralized cloud. In detail, we first focus on the
unique characteristic of traffic flow (such as traffic rule, avoid
collision behaviours), and then build a comprehensive model to
handle multiple scenarios. Technically, our model uses density
functions of velocities, the differential equation of traffic flows,
and the traffic viscosity with information collected from the traffic
flow, the distances between vehicles, the amount and density of
vehicle, the instant velocity, the speed limit, and the momentum
to analysis the the driving scene. We evaluate our model with real
traffic data collected by in-vehicle CPS sensors to the proposed
nearby traffic flow model. Results show that our work can
accurately conduct offline estimation on nearby traffic signal
influence, and reveal the correlations among velocity, density and
(spatial and temporal) location to adjust route during runtime.

Keywords—Cyber-Physical System, Autonomous Vehicles, Traf-
fic Flow Modeling, Intelligent Transportation, Internet of Things,
Machine Learning, Big Data, Cloud Computing

I. INTRODUCTION

With the rapid development in Cyber-Physical Systems
(CPS), cloud computing, machine learning, and artificial intel-
ligence technologies, the autonomous vehicles have advanced
on road. Some the well known autonomous vehicle projects
are Google’s Waymo project, Tesla’s AutoPilot, and Uber’s
self-driving car. All of these autonomous vehicle projects are
heavily relied on the CPSs. CPSs are tightly coupled systems
of hardware and software providing large-scale, closed-loop
control or management of high-level, complex dynamical
systems [1].Specifically, the CPS for an autonomous vehicle
consists of two levels: Local Vehicle Client and Remote Cloud,
as illustrated in Fig. 1. In the Local Vehicle Client level, there
are three main steps, including localization, perception, and
vehicle control, for a car to make driving decisions and adjust-
ments (such as speed controlling, lane switching, and distance
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Fig. 1: Local and cloud functionalities of CPS-enabled autonomous
vehicle systems.

keeping). In the Remote Cloud Level, the centralized datacenter
offers functionalities such as traffic flow monitor, route plan
and optimization, accident collection, traffic scheduling, by
updating route plan based on traffic information collected.

However, in the process of making transportation intelli-
gent and integrated, both the decision system of autonomous
vehicles and big data traffic control system require the analysis
of traffic flow data. Unfortunately, there is only one centralized
traffic flow monitor in the cloud, and there is no local traffic
flow detection module. The latter is important because (1)
cloud-obtained nearby traffic information is not as updated as
first-hand data, since the network delay is inevitable; and (2)
the Internet connection is not always guaranteed, so completely
replying on the remote cloud for updated traffic flow informa-
tion is risky.

Motivated by these limitations, we propose a nearby traffic
flow model based on the real-time data collected by in-
vehicle CPS sensors, as the “nearby traffic flow modelling”
module shown in Fig. 1. Our methodology focuses on the
unique characteristic of traffic flow (such as traffic rule, and
avoiding collision behaviours), and builds a comprehensive
model for multiple scenarios. Technically, the proposed model
is composed of velocity-density functions, traffic flow fluid
dynamics partial differential equation, and traffic flow viscosity
partial differential equation. To sum up, our work has the
following major contributions:

e We use in-vehicle CPS sensors to enhance the offline
route planning and driving decision adjustment based
on first-hand traffic information, especially during poor



internet connection moments.

e QOur traffic flow model can select the optimal speed on
a road, the optimal distance and timing to brake, and
maintain the safe distance to other vehicles to keep.

e Our model can also assist neighboring autonomous vehi-
cles by communicating required information through Ad-
Hoc network communications or through a centralized
cloud.

We evaluate our model with real traffic data collected by
in-vehicle CPS sensors, and results show that our solution can
accurately conduct offline estimation on nearby traffic signal
influence, and reveal the correlations among velocity, density
and (spatial and temporal) location to adjust route during
runtime.

The rest of this paper is organized as follows. Sec. II
presents literature review. Sec. III formulates the problem
and introduces our model. Experimental evaluation results and
analysis are discussed in Sec. IV. We present the conclusions
in Sec. V.

II. RELATED WORK

Cyber-physical systems have emerged as a cutting edge
technology for next-generation industrial applications, and are
undergoing rapid development and inspiring numerous applica-
tion domains [2]. CPS are tightly coupled systems of hardware
and software providing large-scale, closed-loop control or
management of high-level, complex dynamical systems. CPS-
based Vehicular Ad-Hoc Networks (VANETS) [3] in particular
are an active area of research. Study [4] proposed a framework
for the development of predictive manufacturing CPS that
includes capabilities for attaching to the Internet of Things,
and capabilities for complex event processing and Big Data
algorithmic analytic. [5] presented a novel CPS application
for energy management framework toward autonomous electric
vehicle in smart grid. [6] developed a multi-layered context-
aware architecture and introduced two crucial service compo-
nents, vehicular social networks and context-aware vehicular
security. Furthermore, [7] proposed a new type of efficiency
attack which can be used to degrade the performance of
automated vehicular transportation systems.

Study [8] investigated under which circumstance the pres-
ence of a single autonomous vehicle can locally stabilize
the flow, without changing the way the humans drive. A
framework that utilized different models with technology-
appropriate assumptions to simulate different vehicle types
with distinct communication capabilities is presented in [9].
The research on potential benefits when autonomous vehicles
were introduced on larger scale in the road transportation sys-
tem is done by [10]. Machine learning technologies [11]-[14]
and modelling algorithms [15]-[17] also play key roles in au-
tomated vehicular transportation systems. Study [18] focused
on generating models for these concepts and using them to
drive microscopic traffic simulations built upon real world data.
Study [19] improved traffic safety and provide computational
services to road users by introducing a novel cloud computing
model applied to the vehicular Ad-Hoc networks. Study [20]
analyzed and discussed big data solutions [21], [22] that can
be leveraged to address some of the emerging challenges of
autonomous vehicles cloud control system.

III. CPS-ENABLED NEARBY TRAFFIC FLOW MODELLING

Traffic flow study is essentially the topology of vehicles,
which is calculated by two fundamental factors, i.e., velocity

and density. Specifically, “velocity” could be the instantaneous
velocity of a vehicle or could also be the average of multiple
vehicles in a section of the road. “Density” is the number of
vehicles in a unit length of a road section. In this paper, we
focus on how to build the nearby traffic model “locally” and
“offlinely” (i.e., without interacting with cloud), based on the
first-hand data collected by in-vehicle CPS sensors [23].

Traditionally, vehicles are usually analogized as part of
a fluid flow in the traffic flow theory [24] to simplify the
calculation, In fact, both vehicles and fluid flow have common
factors such as fluidity, viscosity and compressibility. However,
it is hard to improve the accuracy of this analogy due to the
following limitations:

e Fluid flow consists of a large amount of randomly moving
particles, which are constantly colliding with each other;
while the traffic flow is made of individual vehicles that
follow a certain rule and attempt to avoid collision if
possible.

e Lots of factors in fluid flow do not have corresponding
counterparts in traffic flow, and some of the common
factors are hard to measure during runtime. In practical,
these factors often are ignored.

e There are more scenarios in traffic that are needed to be
considered, due to road condition, vehicle behavior, and
traffic rules.

Fig. 2: Example of “Local and cloud levels” of CPS-enabled au-
tonomous vehicle systems.

Therefore, we are motivated to build a new model to
address these challenges brought by the traditional fluid the-
ory with the consideration of different scenarios, such as:
continuous traffic flow scenario, vehicle-following scenario,
traffic flow for non-ramp/intersection scenario, traffic pressure
scenario, and viscous traffic flow scenario.

In detail, multiple types of local built-in CPS sensors that
are involved in this modelling, as shown in Fig. 2. They can
be organized as:

e Visual sensors: Using dash and rear camera, radar, laser
signal, and thermographic cameras to capture videos and
nearby object distances. Video images are analyzed by the
machine learning algorithm [25] to get awareness about
the nearby cars and humans.

e Location sensors: Using compass, GPS receiver, altime-
ter and even cellular communication module to obtain the



autonomous vehicle’s temporal and spatial location, and
direction it is facing.

e Motion sensors: Using accelerometer, odometry and
gyroscope to detect the autonomous vehicle’s movement
direction and vehicle’s velocity.

The proposed model is designed to enhance the route
planning and driving decision adjustment (e.g., selecting the
optimal speed on a road, the optimal distance and timing
to brake, and the safe distance to other vehicles to keep)
based on the first-hand traffic information, especially during
poor Internet connection moments. Our model can also assists
neighbor autonomous vehicles through Ad-Hoc network com-
munication [19]) or uploading to the centralized cloud. We
describe details of them in the following several subsections,
and we also summarize parameters in Table I.

TABLE I: Notations.

Notation Meaning

Distance (x) Distance along the direction of vehicles

traveling, with unit of m.

Time (t) Duration of vehicle travel time, with unit
of s.

Vehicle number (M) Number of vehicles in a road section, with
unit of veh.

Density (k) Number of vehicles on a unit length of

road, with unit of veh/km.

Instant velocity (u) Instantaneous velocity of a vehicle passing

a certain point, with unit of m/s.

Critical velocity (u) | Design velocity of the road, with unit of

m/s.

Max velocity (uy) Maximum velocity of the road limited
only by physical factors, without environ-
mental factors, with unit of m/s. Notice

that uy = 2uy,.

Flow (q) Number of vehicles passing through a
certain point per unit time, with unit of

veh/s, defined as ¢ = ku.

Product of number of vehicles and veloc-
ity, with unit of veh - m/s.

Momentum (N)

A. Scenario 1: Continuous Traffic Flow

X X+dx
Fig. 3: Example of the traffic flow continuous function.

We first investigate the continuous traffic flow scenario. In
detail, we aim to obtain the traffic flow continuous function,
which is the concrete expression of the law of conservation
of mass in fluid mechanics. As shown in Fig. 3, we focus on
a road section ranges from x meter to (x + dz) meter, and
we assume that the vehicle density is k (veh), the flow is ¢
(veh/s), the distance is 2(m) and time is ¢ (s). k and ¢ are
both functions of z and ¢, i.e., k(x,t) and ¢(z,1).

ok dq dr

—d —dr == — 1
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where ) is the flow arrival rate, which is a function of influx

r,ie, A\ = %. In fact, there are two cases:

Case 1: if there is no interchanges (i.e., on/off ramps) in
this road section, we have A = 0. In other words, the in-
flow and out-flow can be considered as equivalent. Let the

out-flow rate be %dm, and the in-flow rate to be %dm, ie.,

%dm + %dm =0.

Case 2: if this road section has an on/off ramp, we have
A # 0. Furthermore, when vehicles leave the road section, we
have A < 0 and r < 0; when vehicles enter the road section,
we have A > 0 and r > 0; and finally when there is no vehicle
movement, we have A = 0 and » = 0.

B. Scenario 2: Vehicle-following Traffic Flow

Xo(t+1) Xn(1)

Fig. 4: Example of the vehicle-following scenario.

We next investigate the velocity-density function for the
vehicle-following scenario, which is the basis of the traffic
flow model. This function focuses on the trajectory of each
moving vehicle in the road. We first formulate the vehicle-
following scenario. As depicted in Fig. 4, a “head” vehicle
with a trajectory function as x4 (t) is selected. We hereby only
focus on the movements of this vehicle and all back vehicles.
We notate the trajectory functions of the n-th and (n + 1)-
th vehicles as x,,(¢t) and x,,4+1(t). Then the distance between
two vehicles, n and n + 1, can be calculated as X, (t) =
Tn(t) — xp11(t). To simplify the problem, we assume each
vehicle has a similar length (L) and there is no “overtakings”
between vehicles, then we have L < X,,(¢) < +o00. Obviously,
the velocity of the behind vehicle of two consecutive vehicles
is negatively influenced by the distance between that vehicle to
the frond vehicle, and assume this relationship is w,,+1(X,).
Additionally, when the velocity of (n + 1)-th vehicle (i.e.,
Un+1(t)) satisfies the minimum distance between two vehicles
(i.e., X,(t) = L), the (n + 1)-th vehicle’s speed is set to
its minimum speed limit, i.e., w,+1(t) — 0; similarly, when
X, (t) = 400, upy1(t) will strive to reach its maximum speed
limit, i.e., U,.

Next, for a random road section, assume the n-+1-th vehicle
is located at < x,t > (i.e., location x meter at time t). Since
the selection of this vehicle is random, we can use its velocity
as an estimation of the average of this road section, i.e., u(x, t).
Assume the distance between the rear of vehicle n and the rear
of vehicle n+ 1 is L, then we have u(x,t) = u,41(X,,) for
0 < u < Uyy,. Similarly, the density of this section of the road
k(x,t) can be estimated by the distance between gn + 1)-th
vehicle and its front (n-th) vehicle, i.e., k(z,t) = - for 0 <
k < ky,, where ky, = 1 is the maximum density. Additionally,
for a more general form, we have L,, = L+ X,,(t). As a result,
u is inversely proportional to K, and satisfies u(k,,) = 0 and
u(0) = Upy,.

We also notice that in reality, the relationship between
vehicles in traffic flow is not always one-to-one, and the
velocity and density follows the Greenshields velocity-density
linear relation, i.e.,

k
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where n is a variable parameter, and in this paper, we let
n represent the time sequence. By using the total variation
diminishing (TVD) solution [26] to iterate Eq. 1 and Eq. 2,

have:
we have At

kn-‘rl — k" _ A7((1]_"_1 _ q?_%) (3)
where the nearby traffic flow is:
n 1 n n n n
U1 = [ (Kjq) +a(kj) — (k3+1 KDl @)
and the veloc1ty is:
n 1 n n n n n
41 = 5[(1(’% ) +a(ki_y) — ujfé(kj -kl ®)
kT kT
. ( ]:1) QEL ]) 7 k;LJrl kjn 7& 0
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where j is the differential element unit.

C. Scenario 3: Non-Ramp/Intersection Traffic Flow

Tmffm Direction

Fig. 5: Example of differential equation of traffic flow.

Although scenario 1 covers the non-ramp/intersection case,
traffic flow continues function may not be accurate enough.
To enhance the model for the scenario that a road section
has ramps and intersections, we adopt methodologies from the
compressible continuous flow theory. This is because that mov-
ing vehicles and compressible continuous flow have common
properties such as velocity reduction, density increasing, and
vehicle distance reduction. As illustrated in Fig. 5, the length
of a section in a single lane is Az meters, and the number
vehicles in this section is k- Ax. Let the lift-hand-side “force”
exerting on the cross section be P. Since that the number of
vehicles in this system conserves the right-hand-side “force”
can be calculated as P + - Az. According to Newton’s
second law, we have:

oP
P—(P+— -Azx)=k-Az-a (8
Ox
As u(x(t),z) is a function of x and ¢, we have a = ?le =
% +u- %. Apply this result to Eq. 1, we get:
Ou ou 1 0P
— =0 9
A R T ®

This result for a road section without influx and out flux is
also named as “the first differential equation of traffic flow”.

D. Scenario 4: Traffic Pressure

Traffic pressure is also an important topic of autonomous
vehicles route planning and driving decision adjustment. In
scenario 3, we treat the traffic flow as a compressible continu-
ous flow. In fact, the “traffic pressure” can be further defined as
the particular “force”, which is exerted on the traffic flow, i.e.,
P(veh - m/s?). Physically, it is the force to push M vehicles
with the acceleration of a, and this force depends on factors,
such as road and vehicle conditions, and the resistance from
road to vehicles. In this paper, we focus on the traffic flow
under a constant situation, i.e., when 2 5t k and 8“ = 0. Derived
from Eq. 9, we have:

ou 1 OP
—+ - —=—=0 10
“ ox + k Ox (10)
After differential transforming and integrating Eq. 10, we have:
P =Py +q(us —u) (an

Notice that ¢ = ku is a constant, and P, and w; are given
force and velocity.

E. Scenario 5: Viscous Traffic Flow

The last scenario is based on the fact that vehicles do
affect each other in the real traffic flow. More precisely,
when traffic flow reaches a certain density, vehicles will
show some “viscosity characteristics” due to the cross-vehicle
interference. Specifically, assume the viscosity resistance is

fw=—-2-11=4. %, then when u < wuy, we have f,, = 0;
and when u 2 u1, from Eq. 9 we obtain:
ou ou 1 OP
— — 4 = ) = 12
T S e (12)

If we further take derivative of Eq. 11 by using Eq. 1, we have:

ou  u—u Ok

— &+ -— =0 13
ot k ot 3

When u > ui, Eq. 13 takes “-”. By choosing the integration

interval in the range of [us,u], we have:

ko
k
When the flow represents congestion, i.e., u; = 0, we have
ku = ko -uo. This equation is called “velocity-density constant
flow model”. Similarly, when u < wuy, Eq. 13 takes “+”. We
have u = w,,(1— 2), which is called “Green Shield velocity-
density linear relationship model”.

u=uy + (uz —up) - (14)

IV. EVALUATION

In this section, we feed real traffic data collected by
in-vehicle CPS sensors to the proposed nearby traffic flow
model. Based on the calculation results, we evaluate the traffic
signal influence, and the estimation accuracy in terms of the
correlations among velocity, density and (spatial and temporal)
location.

A. Traffic Signal Influence

We first investigate the traffic signal’s influence on the
vehicle density in a certain road section. We collect data from
CPS sensors of an autonomous vehicle within a 1200-meter
road section. There is a traffic signal in the end of this road
section. Measurement results show that the velocity in this
section is about uy = 16.67m/s(60km/h), the density in the
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Fig. 6: Experimental results for of evaluations. (a)-(b) are for traffic signal influence. (c)-(j) are for traffic flow estimation.

TABLE II: Estimated velocity and density of highway.
3 4 9 10 11 12

Subsec. T 2 5 6 7 8 314 |15 |16
Density 522| 64.6| 67.7| 704| 744 | 747| 758| 731 | 682| 653| 60.5| 559| 534| 51.1| 51.9| 49.8
(pcu/km)
Velocity
(o /Py 98.5| 93.1| 87.4| 84.7| 82.9| 82.6| 80.3| 83.1| 90.3| 92.2| 94.7| 96.9| 99.3| 102.1] 105.2 106.]]

end of this section is about k; = 0.11veh/m on average, and
the initial density of this section is k = 0.04veh/m. We also
have Az = 4m, At = 0.2s, J = 300, the initial condition as
kY = 0.04, where the differential element unit 0 < 7 <J,and
the boundary condition is kj = 0.04, £’} = 0.11.

By using the proposed nearby traffic flow model, we plot
Fig. 6(a) for the correlation of density and location, and
Fig. 6(b) for the correlation of density time, and location. From
these two figures, we observe that the density change is not
a gradient process, instead, it keeps in a relatively flat range
in the beginning, and suddenly rises rapidly in a very short
section (around at location of 984m in Fig. 6(a)). This indicates
that majority of vehicles start to brake around 984m away
from the red light signal, instead of slow down smoothly when
approaching the red light signal (i.e., an optimal solution).
Also, we see that on average, the queue is formed at about
200m away from traffic signal. This information is hard to
obtain online from the cloud during runtime, and it is helpful
for the autonomous vehicle to better control the speed (or even
change the route) according to the nearby traffic flow change
caused by traffic signals, in order to save energy and to improve

the ride experience.
B. Nearby Traffic Flow Estimation Accuracy

In this subsection, we focus on estimating accuracy of
the highway scenario made by in-vehicle CPS sensors on
a high-speed moving autonomous vehicle. Specifically, the
tested highway section length is 8%&m, and the designed ve-
locity for this highway is 120km/h. We divide the section
into 16 subsections, i.e., Ax = 0.5km. Table II shows the
traffic density and velocity results measured by the moving
autonomous vehicle. Additional, the jam density calculated by
the autonomous vehicles is £§ = 106.7pcu/km.

Figs. 6(c)-(d) illustrates the relationship between density,
velocity, time and location and Figs. 6(e)-(f) and (h)-(j) show
the aerial views of density vs location and time, and velocity vs
location and time, respectively. From these figures, we observe
that, after a stable period, the median value of traffic density is
around 64.5pcu/km, and the median value of traffic velocity
is around 93.7km/h. This result can enhance the autonomous
vehicle’s adaptive cruise control feature. Moreover, we observe
that high-density waves cannot transfer forward nor backward,
which validates the accuracy of our CPS-enabled nearby traffic



flow estimation. This is because in our test, the in-flow and
out-flow of the all these subsections are equivalent.
V. CONCLUSION

We present a nearby traffic flow model based on fluid
theory. The proposed model is based on various information
collected by CPS systems on the autonomous vehicles. Our
goal is to help autonomous vehicles to make decisions and
correct the wrong decisions, such as the optimal speed on a
road, the optimal distance for timing to brake, and to keep
a safe distance with other vehicles. Technically, our model
uses local CPS sensors in the autonomous vehicle to estimate
density functions of velocities, the differential equation of
traffic flows, the traffic viscosity with information collected
from the traffic flow, the distances between vehicles, the
amount and density of vehicle, the instant velocity, the speed
limit, and the momentum to analysis the driving scene.
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