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Abstract—Nowadays, replication technique is widely used
in data center storage systems for large scale Cyber-physical
Systems (CPS) to prevent data loss. However, side-effect of
replication is mainly the overhead of extra network and I/O
traffics, which inevitably downgrades the overall I/O performance
of the cluster. To effectively balance the trade-off between I/O
performance and fault tolerance, in this paper, we propose a
complete solution called “AutoReplica” – a replica manager in
distributed caching and data processing systems with SSD-HDD
tier storages. In detail, AutoReplica utilizes the remote SSDs
(connected by high speed fibers) to replicate local SSD caches to
protect data. In order to conduct load balancing among nodes and
reduce the network overhead, we propose three approaches (i.e.,
ring, network, and multiple-SLA network) to automatically setup
the cross-node replica structure with the consideration of network
traffic, I/O speed and SLAs. To improve the performance during
migrations triggered by load balance and failure recovery, we
propose the a migrate-on-write technique called “fusion cache”
to seamlessly migrate and prefetch among local and remote
replicas without pausing the subsystem. Moreover, AutoReplica
can also recover from different failure scenarios, while limits the
performance downgrading degree. Lastly, AutoReplica supports
parallel prefetching from multiple nodes with a new dynamic
optimizing streaming technique to improve I/O performance. We
are currently in the process of implementing AutoReplica to be
easily plugged into commonly used distributed caching systems,
and solidifying our design and implementation details.
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I. INTRODUCTION

With the rise of Cloud Computing and Internet of Things,
as an enabling technology, Cyber-physical systems (CPS) is
increasingly reaching almost everywhere nowadays [1]. As
a fundamental infrastructure of parallel and distributed com-
puting for large scale CPS design, distributed data process
and storage system is an important CPS components [2]. In
those distributed systems, replication technique – a process of
synchronizing data across multiple storage nodes – is often
used to provides redundancy and increases data availability
from the loss of a single storage node [3], [4].

However, there is a problem related to the replication
overhead and tiering storage I/O performance. In a SSD-HDD
tier storage based cluster, SSDs are usually used as the write
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back cache to improve to I/O speed, since writing through
to HDD will dramatically slow down the I/O path. However,
there is only one update-to-date copy cached in the SSD under
this policy, which is not acceptable, However, as revealed in
study [5], SSD is relatively not a “safe destination” though it
can preserve the data after power off, and thus having only
one up-to-date copy on SSD is not acceptable for high SLA
(Service-Level Agreement) demand use cases such as bank,
stock market, and military databases. Therefore, the crucial
problem is “Where to store replicas of those datasets cached
in the SSD while not downgrading the performance?”

Motivated by this, we propose a complete solution called
“AutoReplica”, which is a data replica manager designed for
distributed caching and data processing systems using SSD-
HDD tier storage systems. AutoReplica maintains replicas of
local SSD cache in the remote SSD(s) connected by high speed
fibers, since the access speed of remote SSDs can be way faster
than local HDD’s. AutoReplica also has three approaches (i.e.,
ring, network, and multiple-SLA network) to automatically
build the cross-node replica structure. We also develop a
lazy migrate-on-write technique called “fusion cache” that can
conduct seamlessly online migration operation to balance loads
among nodes, instead of pausing the subsystem and copying
the entire dataset from one node to the other. AutoReplica
can efficiently recover from different disaster scenarios (covers
VM crash, device failures and communication failures) with
limited and controllable performance downgrades. Finally, Au-
toReplica supports parallel prefetching from both primary node
and replica node(s) with a new dynamic optimizing streaming
technique to improve I/O performance. We are currently in
the process of implementing AutoReplica and solidifying our
design and implementation details, and we are also working
hard to make AutoReplica to be easily plugged into other
popular distributed caching and data processing systems.

The remainder of this paper is organized as follows. Sec. II
presents the topological structure of datacenter cluster of
AutoReplica. Sec. III introduces AutoReplica’s cache and re-
placement policy, including the new “fusion cache” technique.
Sec. IV describes recovery policy under different scenarios.
Sec. V discusses the parallel prefetching scheme. Sec. VII talks
the related work. Finally, we summarize the paper in Sec. VIII.

II. TOPOLOGICAL STRUCTURE OF DATACENTER

We first introduce the datacenter cluster topological struc-
ture of AutoReplica. As illustrated in Fig. 1, there are multiple
nodes in the cluster, and each node is a physical host running
multiple virtual machines (VMs) upper on either type 1 or type
2 hypervisors.In our prototype, we use VMware’s ESXi [6] to
host VMs, which is a type 1 implementation. Inside each node,978-1-5090-5252-3/16$31.00 c© 2016 IEEE



there are two tiers of storage devices: SSD tier and HDD tier.
The former tier is used as the cache and the latter tier is used
as the backend storage. Each storage tier contains one or more
SSDs or HDDs, respectively. RAID mode disks can also be
adopted in each tier. SSD and HDD tiers in each node are
shared by VMs and managed by the hypervisor.
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Fig. 1: An example of the structure of AutoReplica’s datacenter.

Inside the SSD tier, there are two partitions: “Cache
Partition” (for local VMs), and “Replica Partition” (for storing
replica datasets from other nodes). As mentioned, AutoReplica
uses write back cache policy to maximize I/O performance,
since writing through to HDD will slow down the I/O path.
However, SSD is relatively vulnerable and not cannot be
equally trusted as a “safe destination” like HDD, though SSD
can preserve the data after power off. Therefore, AutoReplica
maintains additional replicas in the remote SSDs to prepare
for recoveries for failures. In fact, we still can use local HDD
as the second replica device for those extremely high SLA
nodes, which will be discussed in Sec. II-A. Based on these
facts, we propose three approaches to setup the topological
structure of the datacenter clusters, focusing on “how to select
replica nodes?”, “how many replicas nodes do we need?”,
and “how to assign replicas?”.
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Fig. 2: Examples of (a) Ring and (b) Network approaches.

A. Ring Approach

Our first approach is a directed logical “Ring” structure,
which can be either user-defined or system-defined. A system-
defined ring is based on geographic distance parameters (e.g.,
I/O latency and network delay). As shown in Fig. 2(a), this
logical ring defines an order of preference between the primary
and replica nodes. Caching is performed using the local SSD
with a copy replicated to another node in the cluster. Each
node consists of two neighbors, storing replicas on both/one
of them. The node walks in the ring until it can find a replica
to use if unsuccessful during the process of building the ring
cluster. Once it has a replica, it can begin to write caching
independently of what the other nodes are doing.

B. Network Approach

As a “linear” approach, the “Ring” structure has a draw-
back during searching and building replicas, since it has only
one or two directions (e.g., previous and next neighbors).
In order to improve system robustness and flexibility, we
further proposed the “network” approach – a symmetric or
asymmetric network, see Fig. 2(b), which is based on each
node’s preference ranking list of all its connected nodes (i.e.,
not limited to two nodes).

From
To 1 2 3 4

1 - 1 3 2
2 3 - 2 1
3 3 2 - 1
4 1 3 2 -

TABLE I: Example of the “distance matrix” used in Network
approach, which shows the ranking of each path.

In our implementation, we introduce a “distance matrix”
(an example is shown in Table I) to maintain each node’s
preference list ranked by a customized “score” calculated
based on multiple parameters such as network delay, I/O ac-
cess speed, space/throughput utilization ratio, etc. This matrix
is periodically updated through runtime measurement (e.g.,
heartbeat). The main procedure of how to assign the replica
nodes for each node is as following: Each node simply lookup
the matrix and selects its “closest” node as its replica node if
possible. To avoid the “starvation” case that lots of nodes are
choosing one single node or a small range of nodes as their
replica nodes (i.e., the “starvation and overheat” problem),
AutoReplica also limits the maximum replica number per
node. Lastly, each node can also have more than one replica
node.

C. Multiple-SLA Network Approach

In real environment, rather than treating different nodes
equally, the administration is often required to differentiate the
quality of service based their SLAs (and even workload char-
acteristics). To support this requirement, we further develop
the “multiple-SLA network” approach to allow each node to
have more than one replica node with different configurations
based on a replica configuration decision table.

Case Workload Destination #Reps.SLA Temp. SSDP SSDR1 SSDR2 HDDP

1 X X X 1
2 X X 1
3 X X X X (X) 1(2)
4 X X X (X) 1(2)

TABLE II: Replica configuration table for mulitple SLAs.
An example of replica configuration table is shown in

Table II, where SSDP , SSDR1, SSDR2 and HDDP stand
for the SSD tier of the primary node, the SSD tier of the first
replica node, the SSD tier of the second replica node, and the
HDD tier of the primary node, respectively. It also considers:
• SLA: Related with importance of each node. Multiple SLAs

is supported by utilizing multiple replica configurations. Al-
though our example has only two degrees: “important” and
“not important”, AutoReplica supports more fine-grained
degrees (even online-varying) SLAs.
• Temperature: Similar to [7], we use “data temperature” as

an indicator to classify data into two categories according



to their access frequency: “hot data” has a frequent access
pattern, and “cold data” is occasionally queried.

Although local HDD (prmyNode.HDD) can also be used
as a replica destination (case 4 in table II), AutoReplica will
reduce the priorities of those write-to-HDD replica operations
in order not to affect those SSD-to-HDD write back and
HDD-to-SDD fetch operations in the I/O path. Technique [8]
is adopted to improve the performance of the write-to-HDD
queue in the I/O path.

III. CACHE AND REPLACEMENT POLICIES

AutoReplica uses write back cache policy. In detail, when
the SSD tier (i.e., cache) is full, SSD-to-HDD eviction opera-
tions will be triggered in the primary node (prmyNode), while
in the replica node (repNode), the corresponding data set will
simply be removed from the SSD of repNode without any
additional I/O operations to HDDs of repNode. Alg. 3 shows a
two-replica-node implementation. In fact, it can have any num-
ber of SSD replica nodes to support more fine-grained SLAs.
AutoReplica switches between two modes, namely “runtime
mode” (line 19) and “online migration mode” (line 3 to
11) by periodically checks the migTrigger condition (which
considers runtime states such as load balancing and bandwidth
utilization). If migTrigger returns true, AutoReplica will
select the "overheat" replica node (line 6) and is replaced with
the next available replica node (line 7). After that, AutoReplica
begins to run under the “migration mode” (line 14). If the “mi-
grate out” replica node (repNodeOut) has no more “out-of-
date” replica datasets (i.e., the migration is done), AutoReplica
then stops the migration by setting migModeF lag to false
(line 16), and goes back to the runtime mode (line 19). We
describe the details of the runtime mode and the migration
mode cache policy in Sec. III-A and III-B.
 

  Main Procedure of AutoReplica’s Cache Policy 
Note: (1) 𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒  is the primary node.  𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝑅𝑒𝑚  and 𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝑂𝑢𝑡  are the original two replica node. 

𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝐼𝑛 is the destination of migration which replaces 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑁𝑜𝑑𝑒𝑂𝑢𝑡. 
(2) 𝑤𝑟𝑖𝑡𝑒(𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎, 𝑖𝑛𝑝𝑢𝑡𝐷𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔): A function that writes the inputData into the device. If the device is 
“SSD”, then this function sets dirtyFlag of the inputData as True. If the device is “HDD”, then 𝑖𝑛𝑝𝑢𝑡𝐷𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 
can be ignored. 
(3) 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑇𝑟𝑖𝑔𝑔𝑒𝑟 	 : A function returns True if the subsystem needs to migrate due to imbalance load.  
(4) 𝑇T: window size (i.e., frequency) of migration condition checking. 

 Procedure 𝑐𝑎𝑐ℎ𝑒 (𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒, 𝑟𝑒𝑝𝑁𝑜𝑑𝑒1, 𝑟𝑒𝑝𝑁𝑜𝑑𝑒2) 
1       𝑚𝑖𝑔𝑀𝑜𝑑𝑒𝐹𝑙𝑎𝑔 = 𝐹𝑙𝑎𝑠𝑒 
2       for each new I/O request 𝑛𝑒𝑤𝐷𝑎𝑡𝑎 ∈ 𝐼𝑂𝑆𝑡𝑟𝑒𝑎𝑚  on 𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒 do 
3             /* check load balance */ 
4             if  𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒	𝑚𝑜𝑑	𝑇T == 	0 and 𝑚𝑖𝑔𝑀𝑜𝑑𝑒𝐹𝑙𝑎𝑔 ≠ 𝑇𝑟𝑢𝑒 and 𝑚𝑖𝑔𝑇𝑟𝑖𝑔𝑔𝑒𝑟 	 ≠ 𝐹𝑎𝑙𝑠𝑒 then 
5                   𝑚𝑖𝑔𝑀𝑜𝑑𝑒𝐹𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒 
6                   𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝑂𝑢𝑡 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑁𝑜𝑑𝑒(𝑟𝑒𝑝𝑁𝑜𝑑𝑒1, 𝑟𝑒𝑝𝑁𝑜𝑑𝑒2) 
7                   𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝐼𝑛 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝑅𝑒𝑝𝑙𝑖𝑐𝑎() 
8                   if 𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝐼𝑛 == 𝑟𝑒𝑝𝑁𝑜𝑑𝑒1 then 
9                         𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝑅𝑒𝑚 = 𝑟𝑒𝑝𝑁𝑜𝑑𝑒2 

10                   else 
11                         𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝑅𝑒𝑚 = 𝑟𝑒𝑝𝑁𝑜𝑑𝑒1 
12             /* online migrate mode cache policy */ 
13             if  𝑚𝑖𝑔𝑀𝑜𝑑𝑒𝐹𝑙𝑎𝑔 == 𝑇𝑟𝑢𝑒 then 
14                   𝑐𝑎𝑐ℎ𝑒𝑂𝑛𝑙𝑖𝑛𝑒𝑀𝑖𝑔𝑟𝑎𝑡𝑒𝑀𝑜𝑑𝑒(𝑛𝑒𝑤𝐷𝑎𝑡𝑎, 𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒, 𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝑅𝑒𝑚, 𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝑂𝑢𝑡, 𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝐼𝑛) 
15                   if 𝑟𝑒𝑝𝑁𝑜𝑑𝑒𝑂𝑢𝑡. 𝑆𝑆𝐷. 𝑠𝑖𝑧𝑒𝑂𝑓𝑅𝑒𝑝𝐹𝑜𝑟𝑃𝑟𝑚𝑦() == 0 then 
16                         𝑚𝑖𝑔𝑀𝑜𝑑𝑒𝐹𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 
17             /* runtime mode cache policy */             /* migrate replicas */ 
18             else  
19                   𝑐𝑎𝑐ℎ𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑀𝑜𝑑𝑒(𝑛𝑒𝑤𝐷𝑎𝑡𝑎, 𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒, 𝑟𝑒𝑝𝑁𝑜𝑑𝑒1, 𝑟𝑒𝑝𝑁𝑜𝑑𝑒2)  
20       return 

  
Fig. 3: AutoReplica’s cache policy.

A. Runtime Mode Cache Policy

Under the runtime mode, AutoReplica searches the new I/O
request in the local SSD VM partition (i.e., prmyNode.SSD).
If it returns a cache hit, then AutoReplica either fetches it
from the prmyNode.SSD for a read I/O, or updates the
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Fig. 4: Example of Online Migration Cache Policy.

new data to its existing cached copies in prmyNode.SSD
and the correspond replica node(s) for a write I/O. For the
cache miss case, AutoReplica first selects a victim to evict
from the prmyNode.SSD and all its repNode.SSD(s), and
only write updated (with “dirty” flag) evicted dataset into
prmyNode.HDD. AutoReplica supports other replacement
algorithms to implement the victim selection function, such
as Multi-LRU [9], CLOCK [10], ARC [11], CAR [12],
VFRM [13], Glb-VFRM [7] and GREM [14]. AutoReplica
then inserts the new dataset into both prmyNode and all its
repNode.SSD(s). If it is a read I/O, AutoReplica fetches it
from prmyNode.HDD to SSDs of the prmyNode.HDD
and SSDs of all its repNode(s). Additionally, it also returns
the fetched cacheData to the user buffer in the memory. If it
is a write I/O, AutoReplica writes it to SSDs of prmyNode
and all its repNode(s) with dirtyF lag as “dirty”, since it is
updated new data.

B. Online Migration Mode Cache Policy

AutoReplica uses a cost-efficient migrate-on-write scheme
called “fusion cache” to migrate replicas from one repNode
to the other. The main idea is instead of pausing the sub-
system, and copying all existing replicas from the old node
(repNodeOut) to the new node (repNodeIn), regardless
of whether these data pieces are necessary or not, “fusion
cache” keeps the subsystem alive and only writes new in-
coming datasets to repNodeIn and keeps those “unchanged”
cached data on repNodeOut. Eventually, repNodeIn will
replace repNodeOut. In other words, AutoReplica mirrors
the prmyNode.SSD by using the unibody of repNodeOut
and repNodeIn to save lots of bandwidth. An example is
depicted in Fig. 4, where only one replica node is needed
to be “migrated out” and one new replica node is needed
to take over those cached datasets. When a new dataset “A”
comes to the prmyNode, AutoReplica first evicts the victim
“B” on prmyNode.SSD if the cache is full, and writes
“A” to its prmyNode.HDD and the new repNodeIn.SSD.
Meantime, AutoReplica remove the “B” from the old replica
node repNodeOut.SSD. In fact, this policy also works in
the case where exist more replica nodes. Furthermore, in our
implementation, users can also configure the laziness degree
of migration from the traditional pro-active mode to “fusion
cache” style lazy mode.
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Fig. 5: Example of AutoReplica’s recovery scenario.

IV. RECOVERY POLICY

AutoReplica maintains additional replicas in the remote
SSDs to prepare for recoveries for different failures. Specif-
ically, it has different procedures to recover from failures
covering the following four scenarios:

A. VM Crash on Primary Node

A very common failure is that a VM crash on the pri-
mary node. As shown Fig. 5(1), AutoReplica first closes
out the VMDK. It then writes back “dirty” datasets from
prmyNode.SSD to prmyNode.HDD, and keeps them
in repNode.SSD with “nondirty” flag. After that, it
restarts crashed VM on prmyNode, and continues to for-
ward incoming I/O requests on both prmyNode.SSD and
repNode.SSD.

B. Primary Node Cache Device Failure

A primary node cache storage device failure will result
in its inability to continue to write caching. As shown in
Fig. 5(2), AutoReplica first writes back “dirty” datasets from
repNode.SSD to prmyNode.HDD, and keeps them in
repNode.SSD with “nondirty” flags. It then broadcasts this
“unavailable” information to notify those nodes having replicas
of this failure prmyNode (called “associated nodes”) to write
back “dirty” datasets from their own SSD to HDD. These
replicated datasets with “nondirty” flags are still kept in the
repNode.SSD(s). AutoReplica further finds and replaces the
SSD on prmyNode. After that, it continues to write incoming
I/O requests on both prmyNode.SSD and repNode.SSD. It
also continues to let those “associated nodes” to write new
replicas to prmyNode.SSD.

C. Replica Node Cache Device Failure

When a replica node detects a cache device (i.e., SSD)
failure, it will disconnect from the primary node and reject

any future connection attempts from that node with an error
response. As shown in Fig. 5(3), AutoReplica then writes back
“dirty” dataset from prmyNode.SSD to prmyNode.HDD,
but still keeps them in prmyNode.SSD with “nondirty” flag.
After a new replica node is found by using dynamic evaluation
process, AutoReplica continues to write incoming I/O requests
on both prmyNode.SSD and new repNode.SSD. Notice
that policy in Sec. IV-B takes responsibility for recovering this
failure device.

D. Communication Failure Between Primary & Replica Node

When the primary node detects a non-recoverable com-
munication failure between the primary and replica hosts,
AutoReplica will be unable to continue to write caching. To
recover from this failure, as shown in Fig. 5(4), AutoReplica
daemon will write back “dirty” data from prmyNode.SSD
to prmyNode.HDD to ensure all cached data are updated to
the backend HDD. Next, it will start the dynamic evaluation
process to find a new replica node to replace the unreachable
replica node. It will then continue to use both SSDs to cache
I/Os following the “fusion cache” design in migration policy.
Finally, it will broadcast to the network to release all its old
replicas on the unreachable repNode.SSD(s).

V. PARALLEL PREFETCHING

Lastly, replicates can also be used to enable parallel
prefetching from multiple nodes (similar like parallel stripping
in RAID [15]), especially for read operations. An example is
shown in Fig. 6, where we split the dataset (with size of C)
to perfetch (e.g., a file) into two parts (with sizes of αC and
C), and load each part from the primary and replica node.
Assume the access speed of prmyNode.SSD is λ1 (GB/Sec)
and the access speed of repNode.SSD (including the network
delay) is λ2 (GB/Sec). Since the main target for parallel
prefetching is to reduce the total I/O time, i.e., makespan of
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Fig. 6: Example of Parallel-fetch-enabled Read Cache.

each I/O request, we convert our problem into the following
optimization framework:

Minimize:

max(
αC

λ1
,
(1− α)C

λ2
) (1)

Subject to:
α ∈ [0, 1] (2)
λ1 ≥ λ2 > 0 (3)
C

λ1
≥ max(αC

λ1
,
(1− α)C

λ2
) (4)

Eq. 1 is the objective function which minimizes the overall
makespan of an I/O request. The makespan is determined by
the maximum value of the I/O operating time of each side
(i.e., prmyNode.SSD and repNode.SSD). Eq. 2 ensures
that the branching ratio of two streams should be meaningful.
Eq. 3 reflects that the local I/O speed (i.e., from prmyNode)
is usually greater than remote (i.e., repNode) I/O speed
including network delay. Notice that this constraint can be
relaxed as “λ1 > 0 and λ2 > 0”, if the remote I/O speed is
higher (which is true in some rare cases), but the optimization
framework remains the same. Eq. 4 further ensures that the
parallel perfecting operation should only be triggered when it
can help to reduce the I/O makespan.
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Fig. 7: Finding the optimized solution of prefetching stream division.
We then plot these functions and constraints into Fig. 7,

where the red line is the objective function curve, and the
blue line is the constraint of Eq. 4. We can see that there
exists a minimum point at the cross point of f(α) = (1−α)C

λ2

and g(α) = αC
λ1

. In order to calculate this sweet spot, we let:

αC

λ1
=

(1− α)C
λ2

(5)

Then, we can get the minimum makespan ( αC
λ1+λ2

) when:

α =
λ1

λ1 + λ2
(6)

Based on this result, we develop the parallel prefetching
policy. Alg. 8 first describes the main procedure of parallel

fetching daemon, which triggers the parallel perfecting by peri-
odically checking whether the access speed of repNode.SSD
(including the network delay) is close enough to the access
speed of local prmyNode.SSD (by comparing their differ-
ence with a preset threshold ε), and the current utilization ratio
of throughput of the repNode.SSD is less than a threshold
Thr. Notice that the time window TW does not necessarily to
be same as the sliding window previously mentioned in Alg. 3.
The parallel prefetching will be approved if all these conditions
are satisfied, and the parallel fetching policy then calculates
and assigns the branching ratio of dataset to be loaded from
each node. By using the same technique, AutoReplica supports
parallel prefetching from more-than-one replica nodes feature.
This idea can also be extended to support parallel write I/O
operations, which need some additional sync and lock schemes
to ensure data consistencies.

 Main Procedure of Parallel Fetching Daemon  
Note: (1) 𝑐𝑢𝑟𝑟𝑈𝑡𝑖𝑙^_`a: current throughput utilization rate of a node.  

(2) 𝜖: preset threshold to compare the difference between local and remote access speed. 
(3) 𝑇ℎ𝑟 _`a: preset threshold of upper bound of throughput utilization rate of a node to be perfected from. 

 Procedure 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐹𝑒𝑡𝑐ℎ𝐷𝑎𝑒𝑚𝑜𝑛() 
1       𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑅𝑒𝑎𝑑𝐹𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 

2       while True do 

3 
      if (𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒	𝑚𝑜𝑑	𝑇T == 0) and (𝜆 𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒. 𝑆𝑆𝐷 − 𝜆 𝑟𝑒𝑝𝑁𝑜𝑑𝑒. 𝑆𝑆𝐷 ≤ 𝜖) and 
 						(𝑟𝑒𝑝𝑁𝑜𝑑𝑒. 𝑐𝑢𝑟𝑟𝑈𝑡𝑖𝑙^_`a ≤ 𝑇ℎ𝑟 _`a) then 

4                   𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑅𝑒𝑎𝑑𝐹𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒 
5             else 
6                   𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑅𝑒𝑎𝑑𝐹𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 
7       return 

 
  
 

 Parallel Fetching Policy 
Note: (1)	𝜆(𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒. 𝑆𝑆𝐷): the IO speed of 𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒. 𝑆𝑆𝐷. 

(2)	𝜆(𝑟𝑒𝑝𝑁𝑜𝑑𝑒. 𝑆𝑆𝐷): the end-to-end IO speed of 𝑟𝑒𝑝𝑁𝑜𝑑𝑒. 𝑆𝑆𝐷 (including network delay). 
 Procedure 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐹𝑒𝑡𝑐ℎ(𝑑𝑎𝑡𝑎) 

1       if 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑅𝑒𝑎𝑑𝐹𝑙𝑎𝑔 == 𝑇𝑟𝑢𝑒 then  
2 

            𝛼 = f(ghijklmn.aao)
f ghijklmn.aao pf(hngklmn.aao)

  
3             fetch size of 𝛼 ⋅ |𝑑𝑎𝑡𝑎| part of data from 𝑝𝑟𝑚𝑦𝑁𝑜𝑑𝑒. 𝑆𝑆𝐷 

            fetch size of (1 − 𝛼) ⋅ |𝑑𝑎𝑡𝑎| part of data from 𝑟𝑒𝑝𝑁𝑜𝑑𝑒. 𝑆𝑆𝐷 
4       return 

 

Fig. 8: Parallel Prefetching Procedure.

VI. WORK IN-PROGRESS
We are currently building the AutoReplica in a multi-nodes

cluster consists of NVMe SSDs and RAID mode HDDs to
improve the performance. Hosts are connected by high speed
fiber cables. In terms of software implementation, AutoReplica
works on the VMWare’s ESXi in the “user mode”. With our
customizations, AutoReplica is very close to a “pseudo-kernel
mode” application. AutoReplica consists of 4 components: a
vSphere web client plug-in, a CIM provider, multiple I/O filter
library instances and a daemon process on each VM. Our plans
of validation and evaluations are:
• Different replacement algorithms will be tested under Au-

toReplica. Evaluation metrics will be I/O hit ratio and
average I/O latency.
• We plan to test the performance difference of using SSD as

a read-only, a write-only and a read-write cache.
• Both homogeneous and heterogeneous VMs are planned to

be installed onto AutoReplica to measure the performance
interference among different combinations.
• We will test the recovery correctness and efficiency of

different failure scenarios that are manually triggered and
following well-tuned temporal interval distributions.
• We will measure the benefit and overhead of multiple

replicas under different SLA configurations. We will focus
on the consistency and atomicity of I/O operations.
• We plan to measure the I/O speed improvement brought

by parallel prefetching, with the consideration of the corre-



sponding overhead, such as I/O path and network bandwidth.
• We plan to work on AutoReplica’s compatibility with other

hypervisors such as KVM/Xen and Virtual Box.
VII. RELATED WORK

Replications are widely used in the big data and cloud
computing era. Facebook’s proprietary HDFS implementa-
tion [4] constrains the placement of replicas to smaller groups
in order to protect against concurrent failures. MongoDB [3]
is a NoSQL database system that uses replicas to protect
data. Its recovery scheme is based on the election among live
nodes. Copyset [16] is a general-purpose replication technique
that reduces the frequency of data loss. [17] designed a
novel distributed layered cache system built on the top of
the Hadoop Distributed File System. Studies [7], [14], [18]–
[21] investigated SSD and NVMe storage-related resource
management problems, in order to reduce the total cost of
ownership and increase the Flash device utilization to improve
the overall I/O performance. Based on the frequency of data
operation, [22] is proposed to solve the problem of uneven dis-
tribution of data in auto-sharding. [23] developed an automated
method for identifying and repairing logical data discrepancies
between database replicas in a database cluster. [24] proposed
a replication strategy based on the access pattern of tile in
order to optimize load balancing for large-scale user access
in cloud-based WebGISs. Triple-H [25] is a hybrid design to
minimize the I/O bottlenecks in HDFS and ensure efficient
utilization of heterogeneous storage devices on HPC clusters.

VIII. CONCLUSION
We proposed a complete data replica manager solution

called “AutoReplica’, working in distributed caching and data
processing systems using SSD-HDD tier storages. AutoReplica
balances the trade-off between the performance and fault
tolerance by storing caches in replica nodes’ SSDs. It has three
approaches to build the replica cluster in order to support mul-
tiple SLAs, based on an abstract “distance matrix” which con-
siders preset priorities, workload temperature, network delay,
storage access latency, and etc. AutoReplica can automatically
balance loads among nodes, and can conduct seamlessly online
migration operation (i.e., migrate-on-write scheme), instead of
pausing the subsystem and copying the entire dataset from
one node to the other. AutoReplica further supports parallel
prefetching from both primary node and replica node(s) with
a new dynamic optimizing streaming technique to improve I/O
performance.
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