
AutoTiering: Automatic Data Placement Manager in
Multi-Tier All-Flash Datacenter

Zhengyu Yang∗, Morteza Hoseinzadeh‡, Allen Andrews†, Clay Mayers†,
David (Thomas) Evans†, Rory (Thomas) Bolt†, Janki Bhimani∗, Ningfang Mi∗ and Steven Swanson‡

∗Dept. of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115
‡ Dept. of Computer Science and Engineering, University of California San Diego, San Diego, CA 92093
† Samsung Semiconductor Inc., Memory Solution Research Lab, Software Group, San Diego, CA 92121

Abstract—In the year of 2017, the capital expenditure of Flash-
based Solid State Drivers (SSDs) keeps declining and the storage
capacity of SSDs keeps increasing. As a result, the “selling point”
of traditional spinning Hard Disk Drives (HDDs) as a backend
storage – low cost and large capacity – is no longer unique,
and eventually they will be replaced by low-end SSDs which
have large capacity but perform orders of magnitude better
than HDDs. Thus, it is widely believed that all-flash multi-tier
storage systems will be adopted in the enterprise datacenters in
the near future. However, existing caching or tiering solutions for
SSD-HDD hybrid storage systems are not suitable for all-flash
storage systems. This is because that all-flash storage systems do
not have a large speed difference (e.g., 10x) among each tier.
Instead, different specialties (such as high performance, high
capacity, etc.) of each tier should be taken into consideration.
Motivated by this, we develop an automatic data placement
manager called “AutoTiering” to handle virtual machine disk
files (VMDK) allocation and migration in an all-flash multi-
tier datacenter to best utilize the storage resource, optimize the
performance, and reduce the migration overhead. AutoTiering
is based on an optimization framework, whose core technique
is to predict VM’s performance change on different tiers with
different specialties without conducting real migration. As far as
we know, AutoTiering is the first optimization solution designed
for all-flash multi-tier datacenters. We implement AutoTiering
on VMware ESXi [1], and experimental results show that it can
significantly improve the I/O performance compared to existing
solutions.

Index Terms—All-Flash Datacenter Storage, Caching & Tier-
ing Algorithm, NVMe SSD, Big Data, Cloud Computing, Re-
source Management, I/O Workload Evaluation & Prediction

I. INTRODUCTION
A basic credendum of cloud computing can be summarized

as: user devices are light terminals to assign jobs and gather
results, while all heavy computations are conducted on remote
distributed server clusters. This light-terminal-heavy-server
structure makes high availability no longer an option, but
a requirement in today’s datacenters. Furthermore, when we
bring compute, network, and storage capabilities into balance,
it is found that the biggest challenge here is closing the gap
between compute and storage performance to shift storage’s
curve back towards Moore’s law [2]. In other words, storage
I/O is the biggest bottleneck in large scale datacenters. As
shown in study [3], the time consumed to wait for I/Os is the

This work was completed during Zhengyu Yang and Morteza Hoseinzadeh’s
internship at Samsung Semiconductor Inc. This project is partially supported
by NSF grant CNS-1452751.

main cause of idling and wasting CPU resources, since lots
of popular cloud applications are I/O intensive, such as video
streaming, file sync and backup, data iteration for machine
learning, etc.

To solve the problem caused by I/O bottlenecks, parallel
I/O to multiple HDDs in Redundant Array of Independent
Disks (RAID) becomes a common approach. However, the
performance improvement from RAID is still limited, there-
fore, lots of big data applications strive to store intermediate
data to memory as much as possible such as Apache Spark.
Unfortunately, memory is too expensive, and its capacity is
very limited (e.g., 64∼128GB per server), so it alone is not
able to support super-scale cloud computing use cases. As a
device between RAM and HDD, SSD has an acceptable price
and space. Since 2008, SSDs started to be adopted in the
server market and broke the asymmetric R/W IOPS barrier
dramatically, and became one of the promising solutions
to speedup storage systems as a cache or a fast tier for
slow HDDs [4]. However, as time goes by, SSD-HDD based
solutions are no longer competent to meet the current big data
requirements, due to the huge I/O speed gap between SSDs
and HDDs. On the other hand, the capital expenditure of Flash-
based SSDs keeps decreasing and the storage capacity of SSDs
keeps increasing. Thus, it is widely believed that SSD-HDD
solution is just for a transition period, and all-flash multi-tier
storage systems will be adopted in the enterprise datacenter in
the near future, similar to what happened to HDD-tape solution
30 years ago. For example, high end NVMe SSDs can replace
SATA SSD, and low end TLC SSDs will replace HDDs.

However, traditional caching algorithms are deemed useful
only when the performance difference between storage devices
is at least 10x, while the gap between SSD tiers in all-
flash datacenters is not that big. More importantly, SSDs
are expensive, and it is costly to maintain duplicated copies
(one for cache and one for backend data) in two SSD tiers.
Thus, we develop an automatic data placement manager called
“AutoTiering” to handle VM allocation and migration in an
all-flash multi-tier datacenter. The ultimate goal is to best
utilize the storage resource, optimize the performance, and
reduce the migration overhead, by associating VMs with
an appropriate tier of storage. AutoTiering is based on an
optimization framework to provide the best global (i.e., for all
VMs in the datacenter) migration and allocation solution over
runtime. AutoTiering’s approximation approach further solves978-1-5090-6468-7/17$31.00 c© 2017 IEEE

the simplified problem in a polynomial time, which considers
both historical and predicted performance factors, as well as
estimated migration cost. This comprehensive methodology
prevents to frequently migrate back and forth VMs between
tiers due to I/O spikes. Specifically, AutoTiering uses a micro-
benchmark-based sensitivity calibration and regression session
to predict VM’s performance change on different tiers without
performing real migration, since different VMs may have
different benefits of being upgraded to a high end tier. We
implement AutoTiering on VMware ESXi [1] and evaluate
its performance with a set of representative applications. The
experimental results show that AutoTiering can significantly
improve the I/O performance by increasing I/O throughput
and bandwidth as well as reducing I/O latency.

The rest of this paper is organized as follows. Sec. II
presents the background and literature review. Sec. III for-
mulates the problem and introduces an optimization frame-
work. Sec. IV proposes our approximation algorithm to solve
the problem in a polynomial time. Experimental evaluation
results and analysis are discussed in Sec. V. We present the
conclusions in Sec. VI.

II. BACKGROUND AND LITERATURE REVIEW

Substantial work has been done to improve I/O operations
in datacenters at both hardware and software levels. In this
section, we discuss some of these work as well as the
evolutionary inclination towards AutoTiering.

SSD as Cache/Tier of HDD: In the recent years, Flash-based
SSDs have been commonly used in datacenters. An SSD can
be used whether as a cache for HDD or as a distinct storage
tier. The main difference is that the cache approach has two
copies for hot data, one in SSD and one in HDD (two copies
are synced under the write through policy, and are not synced
under the write back policy), while the tiering approach simply
migrates data between tiers and only keeps one version of the
dataset. Lots of caching and tiering mechanisms [5]–[13] are
developed for cloud storage systems.

Data Placement in Multi-tier All Flash Data Center: SSD-
HDD based solutions may work for a limited number of
users (VMs) with mediate I/O intensity and small working
set size, but for the era of super-scale clusters (e.g., clouding
computing, IoT in 5G network), the I/O bottleneck gets
mitigated, but not resolved [14].The main reason is that in
both SSD-HDD caching and tiering approaches, there still
exists a huge performance gap between SSDs and HDDs.
With the decreasing price and increasing capacity of SSDs,
a promising solution to quench this gap is to setup an all-
flash datacenter which is becoming a reasonable solution in
the near future. With the aim of further reducing the overall
capacity, studies [15], [16] proposed to periodically recom-
pute VM assignments. Study [17] introduced mathematical
model formulations for big data application performance and
migrating VMs among tiers, with the aim of minimizing the
overhead of data migration. Study [18] proposed a non-volatile
memory based cache policy for SSDs by splitting the cache
into four partitions and determining them to their desired
sizes according to a page’s status. We summarize the specs of

SSDs with different ends available in market by July 2017 in
Table. I. As we can see, an all-flash multi-tiers solution can be
built from different SSDs with different specialties, e.g., super
performance tier with 3D XPoint SSD, high performance tier
with NVMe and SLC SSDs, and large capacity tier with MLC
and TLC SSDs.

TABLE I: Performance and cost of different SSDs in July 2017.
SSD Type Cost

($/GB)
Max Size
(Bytes)

Read Time
(µs)

Write Time
(µs)

3D XPoint 4.50 375G 10 10
NVMe 0.57 3.2T 20 20
SLC SATA3 0.64 480G 25 250
MLC SATA3 0.30 2T 50 750
TLC SATA3 0.28 3.84T 75 1125

III. PROBLEM FORMULATION

In this section, we first formulate the problem of VM
allocation and migration in an all-flash multi-tier datacenter,
and then develop an optimization framework to best utilize
SSD resource among VMs in the datacenter.

A. System Architecture

Fig. 1 illustrates the system architecture of AutoTiering
which has the following components:

• IO Filter: Attached to each VMDK (virtual machine disk
file) being managed on each host, it is responsible for
collecting I/O related statistics as well as running special
latency tests on every VMDK. The data will be collected
and sent to the AutoTiering Daemon on the host [19].

• Daemon: Running on the VM hypervisor of all hosts,
it tracks the workload change (i.e., I/O access pattern
change) of each VM, collects the results of latency
injection tests from the IO Filter, and sends them to the
Controller.

• Controller: Running on a dedicated server, it is respon-
sible for making decisions to trigger migration based on
the predicted VM performance (if it is migrated to other
tiers) and the corresponding migration overhead.

B. Optimization Framework

To develop an optimization framework aimed at minimizing
the total amount of server hours by determining a VM mi-
gration schedule, we formulate the problem by investigating
the following factors: First, from each VM’s point of view,
the reason for a certain VM to be migrated from one tier
to another is that the VM can perform better (e.g., less
average I/O latency, higher IOPS, higher throughput, etc.)
after migration. Second, the corresponding migration cost need
to be considered, because migration is relatively expensive
(consumes resource and time) and not negligible. Third, from
the global optimization’s point of view, it is hard to satisfy
all VMs to be migrated to their favorite tiers at the same time
due to resource constraints and their corresponding SLAs (i.e.,
Service Level Agreement). Fourth, the global optimization
should consider overtime changes of all VMs as well as post-
effects of migration. For example, the current best allocation
solution may lead to a bad situation for the future since VMs

APP
OS
APP
OS

VM Hypervisor AutoTiering
Daemon

AutoTiering Controller

VM Server 1 VM Server 2 VM Server N

…

All-Flash Storage Pool

Fiber Channels

IO Filter

APP
OS
APP
OS

IO Filter

APP
OS
APP
OS

IO Filter

APP
OS
APP
OS

VM Hypervisor AutoTiering
Daemon

IO Filter

APP
OS
APP
OS

IO Filter

APP
OS
APP
OS

IO Filter

APP
OS
APP
OS

VM Hypervisor AutoTiering
Daemon

IO Filter

APP
OS
APP
OS

IO Filter

APP
OS
APP
OS

IO Filter
…

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD
Tier 1

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD
Tier 2

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD
Tier M

…

Fig. 1: Architecture of AutoTiering in a multi-tier all-flash storage
system.

are changing behaviors during runtime. Based on these factors,
our optimization framework needs to consider potential bene-
fits and penalties, migration overhead, historical and predicted
performance of VMs on each tier, SLA, as shown in Eq. 1
to 5. Table II represents notations that we use in this paper.

Maximize:∑
∀v,∀t,∀τ

wv,τ · [
∑
∀k

αk · r(v, tv,τ , τ, k)− β · g(v, tv,τ−1, tv,τ)],

(1)
Subject to:
for ∀v,∀τ :

tv,τ 6= ∅, and |tv,τ | ≥ 1, (2)
for ∀τ1, τ2 ∈ [0,+∞) :

r(v, tv,τ1 , τ1, ks) ≡ r(v, tv,τ2 , τ2, ks) ≥ 0, (3)
for ∀v,∀t,∀τ :

r(v, tv,τ , τ, k) = rPrd(v, tv,τ−1, tv,τ , τ − 1, k) ≥ 0, (4)∑
∀v

r(v, tv,τ , τ, k) ≤ Γk ·R(tv,τ , k), (5)

The main idea is to maximize the “Profit”, which is the en-
tire performance gain minus penalty, i.e., “Performance Gain
- Performance Penalty”, as shown in the objective function
Eq. 1. The inner “sum” operator conducts a weighted sum
of the usage of all types of resources (such as throughput,
bandwidth and storage size, etc.) of each VM, assuming
migrating VM v from tier tτ−1 to tτ . The outer “sum” operator
further iterates all possible migration cases, where weight
parameter wv,τ reflects the SLA of VM v in τ epoch. Notice
that the term “migration” in this paper is not to migrate a
VM from one host server to another. Instead, only backend
VMDK files are migrated from one to the other SSD tier.
As a result, non-disk-I/O related resources (e.g., host-side
CPU and memory) are not considered in this paper. Eq. 2
guarantees that each VM is hosted by at least one disk tier.
In fact, each VM can have multiple VMDKs, and each of
them can be located at different tiers. Unlike the previous
SSD-HDD tiering work [12], [20] that are operating on fine-
grained data blocks due to HDD speed bottleneck, the minimal
unit to migrate in this paper is the entire VMDK of each
VM. Eq. 3 ensures that storage size (i.e., VMDK size) will
not change before and after migrations, where ks is the type

TABLE II: Notations.
Notation Meaning
v, vi VM v, i-th VM, v ∈ [1, vmax], where

vmax is the last VM.
t, ti Tier t, i-th tier, t ∈ [1, tmax], where tmax

is the last tier.
tv,τ VM v’s hosting tier during epoch τ .
k Different types of resources, k ∈

[1, kmax], such as throughput, bandwidth,
storage size, and etc.

τ Temporal epoch ID, where τ ∈ [0,+∞).
αk, β k-th resource’s weight, migration cost

weight.
r(v, tv,τ , τ, k) Predicted type of k resource usage of VM

v running on tier tv,τ .
g(v, tv,τ−1, tv,τ) Migration cost of VM v during epoch τ

from tier tv,τ−1 to tier tv,τ .
ks “Storage” resource’s index.
µ(v, τ − 1) Estimated migration speed of VM v at

time τ − 1 epoch.
Pr(v, t, τ),
Pw(v, t, τ)

Read/write resource of VM v on tier t
during epoch τ .

Pr(Λ, t, τ),
Pw(Λ, t, τ)

All remaining available read/write re-
source of tier t during epoch τ .

Γk Upper bound (in percentage) of each type
of resource that can be used.

R(tv,τ , k) Total capacity of k-th type of resource on
tier tv,τ .

Lt Original average I/O latency (without in-
jected latency) of tier t.

bv , mv Parameters of TSSCS liner regression
model (y = mx+ b).

sv Average I/O size of VM v.
Sv , VM[v].size Storage size of VM v.
wv,τ , wetP [t],
wetB[t], wetS[t]

Weight of VM v and weights of tier t’s
each type of resource.

maxP [t], maxB[t],
maxS[t], spc[t].P ,
spc[t].B, spc[t].S

Preset available resource caps and special-
ties of tier t, P=throughput, B=bandwidth,
S=storage size.

index of storage resource. Eq. 4 shows that a prediction model
function is utilized to predict the performance gain (for details,
see Sec. IV-2). Eq. 5 lists resource constraints, where Γk is
preset upper bound (in percentage) of each type (i.e., k-th)
of resource that can be used. Finally, the temporal migration
overhead is the size of the VM to be migrated, divided
by the bottleneck of migrate-out read speed and migrate-in
write speed, i.e., g(v, tv,τ−1, tv,τ) =

r(v,tv,τ−1,τ−1,ks)
µ(v,τ−1) . The

migration speed is µ(v, τ − 1) = min([Pr(Λ, tv,τ−1, τ −
1) + Pw(Λ, tv,τ−1, τ − 1)), where Pr(Λ, tv,τ−1, τ − 1) is
the function of available remaining read throughput. Since we
are going to live migrate VM v, the read throughput used by
this VM (Pr(v, tv,τ−1, τ − 1)) is also available and has been
added back here. Pw(Λ, tv,τ−1, τ − 1) gives the migrate-in
write throughput.

Since the system has no information on the future workload
I/O patterns, it is impossible to conduct the global optimization
for all τ time periods during runtime. Moreover, the decision
making process for each migration epoch in the global optimal
solution depends on the past and future epochs, which means
that Eq. 1 cannot be solved by traditional sub-optimal-based

dynamic programming techniques. Lastly, depending on the
complexity of the performance prediction model (e.g., Eq. 4),
the optimization problem can easily become NP-hard.

IV. APPROXIMATION ALGORITHM DESIGN
To obtain the result close to the optimized solution in

a polynomial time, we have to relax some constraints. In
detail, we first downgrade the goal from “global optimizing
for all time” to “only optimizing for each epoch” (i.e., runtime
greedy). Furthermore, since we have the foreknowledge of
each tier’s performance “specialty” (such as high throughput,
high bandwidth, large space, small write amplification func-
tion, large over-provisioning ratio, large program/erase cycles,
etc.), we can make migration decisions based on the ranking of
the estimated performance of each VM on each tier, consid-
ering each tier’s specialties and corresponding estimation of
migration overhead. Details of our approximation algorithm
are discussed in the following subsections.

1) Main Procedure: Alg. 1 lines 1-8 show the main
procedure of AutoTiering, which periodically monitors the
performance and checks whether a VM needs to be mi-
grated. Specifically, monitorEpoch is the frequency of eval-
uating and regressing the performance estimation model, and
migrationEpoch is the frequency of triggering VM migration
from one tier to the other one. The migration decision is
made at the beginning of each migrationEpoch, which is
greater than monitorEpoch. Apparently, the smaller temporal
window sizes, the more frequent monitoring, measurement,
and migration. The system administrator can balance a tradeoff
between the accuracy and the migration cost by conducting a
sensitivity analysis before deployment. As shown in line 4
of Alg. 1, procedure tierSpdSenCalibrate estimates VM’s
performance on each tier based on the regression model. Line
5, thus, calculates performance matrices, and line 6 calculates
the score by considering the historical and current performance
of each VM, estimates the corresponding migration overhead.
Finally, VM migrations are triggered, see line 8. We describe
their details in the following subsections.

2) Tier Speed Sensitivity Calibration: In order to estimate
VM’s performance on other tiers without conducting actual
migration, we first try to “emulate” the speed of tiers by
manually injecting a synthetic latency to each VM’s I/Os, and
measure the resultant effect on total I/O latency by calling
IOFilter APIs. Our preliminary experiments show that the
performance variation can be modeled to a linear function.
VMs running different types of applications have varying
performance sensitivity to the tier. Motivated by these ob-
servations, we introduce a micro-benchmark session, called
“Tier Speed Sensitivity Calibration Session (TSSCS)”, to
predict (i.e., without conducting actual migration) how much
performance benefit (resp. performance penalty) it can take
for each VM if we migrate that VM to a faster (resp. slower)
tier. In detail, TSSCS has the following properties:

• Lightweight: Running inside the IOFilter, TSSCS injects
a synthetic tiny latency to each VM in a very low
frequency, without affecting the current hosting workload
performance.

Algorithm 1: AutoTiering Procedure Part I.
1 Procedure autoTiering()
2 while True do
3 if currT ime MOD monitorEpoch = 0 then
4 tierSpdSenCalibration();
5 calCapacityMatrices();
6 calScore();
7 if currT ime MOD migrationEpoch = 0 then
8 triggerMigration();
9 Procedure tierSpdSenCalibration()

10 for t ∈ tierSet do
11 for v ∈ VMSet[t] do
12 for samplesWithLatency ∈ sampleSet[t][v] do
13 CV+ = calCV (samplesWithLatency);
14 samplesWithLatency =

avg(samplesWithLatency);
15 CV/ = len(sampleSet[t][v]);
16 if CV ≥ 1 then
17 VM [v].conf = 0.05;
18 else
19 VM [v].conf = 1− CV ;
20 (VM [v].m, V M [v].b) =

regress(sampleSet[t][v]);
21 return;
22 Procedure calCapacityMatrices()
23 for t ∈ tierSet do
24 for v ∈ VMSet[t] do
25 Lat = estimateAvgLat(v, t);
26 if Lat > 0 then
27 IOPS = 106/Lat;
28 else
29 IOPS = 0;
30 VMCapMat[t][v].P = IOPS;
31 VMCapMat[t][v].B = IOPS×VM [v].avgIOSize

106
;

32 VMCapMat[t][v].S = VM [v].size;
33 return;
34 Procedure estimateAvgLat(v,t)
35 return VM [v].m× (tierLatency[t]−

tierLatency[VM [v].tier])) + VM [v].b;

• Multi-Samples per Latency: TSSCS improves the accu-
racy of emulating each VM’s performance under each
tier by taking the average over multiple samples that are
obtained with the same injected latency of each tier.

• Multi-Latencies per Session: TSSCS takes multiple laten-
cies per session to refine the regression.

• Multi-Sessions during Runtime: TSSCS is periodically
triggered to update the regression model by calling
“tierSpdSenCalibration” in Alg. 1 line 4.

Fig. 2 depicts an example of three VMs running on three
different tiers: VM v1 on tier t1, VM v2 on tier t2, and
VM v3 on tier t3. Assume t1 is 2,000 µs faster than t2,
and t2 is 2,000 µs faster faster than t3. We run TSSCS on
each VM on their hosting tier, and get the latency curves
shown in three plots in Fig. 2. Since all injected latencies are
additional to the original bare latency (i.e., without injected
latency), we have to align them according to the absolute
latency values (i.e., bare latency + injected latency). Notice
that since we cannot inject negative latencies (i.e., obviously
we can only slow down the tier), the dash lines in subfigures

0

1400

2800

4200

5600

7000

8400

9800

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000

0

1400

2800

4200

5600

7000

8400

9800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1400

2800

4200

5600

7000

8400

9800

-2000 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Tier1
Tier2

VM1 on Tier1

VM2 on Tier2

VM3 on Tier3

L1-L2

L1-L3 L2-L3 L3-L3

Tier3

Av
er

ag
e

I/O
La

te
nc

y
(µ

s)
Av

er
ag

e
I/O

La
te

nc
y

(µ
s)

Av
er

ag
e

I/O
La

te
nc

y
(µ

s)

Injected I/O Latency (µs)

Injected I/O Latency (µs)

Injected I/O Latency (µs)

L2-L2 L3-L2

L1-L1 L2-L1 L3-L1

v1→t1

v1→t2

v1→t3

v2→t1

v2→t2

v2→t3

v3→t1

v3→t2 v3→t3

Fig. 2: Example of average I/O latency estimation.

“VM2 on tier2” and “VM3 on tier3” are regressed based on
the solid lines. After that, we can draw three (colored) lines
for each tier based on their absolute latency values (i.e., red
for tier1, green for tier2, and blue for tier3). Then, we can
easily predict the average I/O latency values of each VM
on each tier (i.e., red points for t1, green points for t2, and
blue points for t3). We see that VM1 is the most sensitive
one to tier speed changes (i.e., with the greatest gradient),
while VM3 is the least sensitive one (i.e., relatively flat).
Therefore, intuitively, we should assign VM1 to tier1 (fastest
tier) and VM3 to tier3 (slowest tier). Alg. 1 lines 9-21 describe
the procedure of tier speed sensitivity calibration session
(TSSCS). In addition, AutoTiering calculates the coefficient
variation (CV) of sampling results to decide the estimation
confidence, see in lines 13 and 16-19.

3) Performance Capacity Matrices: Once we have the
average latency vs. injected latency curves of each VM of the
current moment, we calculate corresponding performance esti-
mation of throughput (denoted as P , unit in IOPS), bandwidth
(denoted as B, unit in MBPS), and storage size (denoted as S,
unit in bytes), and record them into three two-dimensional ma-
trices, i.e., VMCapMat[t][v].P , VMCapMat[t][v].B, and
VMCapMat[t][v].S, where t and v are IDs of tier and VM,
respectively. Compared to the first two matrices, the last matrix
is relatively straightforward to be obtained by calling the
hypervisor APIs to measure the storage size that each VM
is occupying. As shown in Alg. 1 lines 22-33, AutoTiering
updates the VM capacity matrices (i.e., VMCapMat) by
reiterating for all tiers and VMs. It estimates “new” latency
under other tiers by calling the “estimateAvgLat(v, t)”
function in Alg. 1 line 25. Lines 34-35 show the detail of
estimateAvgLat function, where the input parameters are
VM v and target tier t for estimation, which returns an
estimation based on linear regressions of m and b values.
Once the estimated average I/O latency results are obtained,
we calculate the throughput and bandwidth in Alg. 1 lines 30

Algorithm 2: AutoTiering Procedure Part II.
1 Procedure calScore()
2 for t ∈ tierSet do
3 for v ∈ VMSet[t] do
4 if maxP [t] < VMCapMat[t][v].P or

maxB[t] < VMCapMat[t][v].B or
maxS[t] < VMCapMat[t][v].S then

5 VMCapRatMat[t][v].P = 0;
6 VMCapRatMat[t][v].B = 0;
7 VMCapRatMat[t][v].S = 0;
8 tierV MPerfScore[t][v] = −1;
9 continue;

10 /* Convert to percent capacities */;
11 VMCapRatMat[t][v].P = VMCapMat[t][v].P

maxI[t]
;

12 VMCapRatMat[t][v].B = VMCapMat[t][v].B
maxP [t]

;
13 VMCapRatMat[t][v].S = VMCapMat[t][v].S

maxS[t]
;

14 tierV MPerfScore[t][v] =
agingFactor × ttlV MCapRatMat[t][v] +
currCapScore(t, v)− wetMig[t]×
migCost(t, v);

15 return;
16 Procedure migCost(t,v)
17 migSpd = min(remReadThrput(VM [v].tier) +

VM [v].currReadThrpt, remWriteThrput(t));
18 return VM [v].size/migSpd;
19 Procedure triggerMigration()
20 for t ∈ tierSet do
21 for v ∈

descendingSortByScore(tierV MPerfScore[t])
do

22 if VM [v].isAssigned = False and
tierV MPerfScore[t][v] 6= −1 and
tierHasCapacityForVM(t, v) then

23 assignVMToTier(v,t);
24 VM[v].isAssigned=True;
25 return;

and 31. Lastly, the storage size will also be updated into the
VMCapMat (i.e., Alg. 1 line 32). Furthermore, since it gets
harder to evaluate demands of different recourse types together
(because they have different units), AutoTiering normalizes the
VM’s estimated/measured throughput, bandwidth and storage
utilization value according to the total available resource
capacity of each tier, which is called the normalized capacity
utilization rate matrix VMCapRatMat, as shown in Alg. 2
lines 4-13.

4) Performance Score Calculation: AutoTiering takes three
steps to calculate the performance score based to reflect
the following factors: First, Characteristics of both tier and
VM: the score should reflect each tier’s specialty and each
VM’s workload characteristics running on each tier. Thus, our
solution is to calculate each VM’s score on each tier separately.
Second, SLA weights: VMs are not equal since they have
different SLA weights, as shown in Eq. 1. Third, Confidence
of estimation: we use coefficient variation calculated in perfor-
mance matrices to reflect the confidence of estimation. Fourth,
History and migration costs: a convolutional aging factor for
historical scores and estimated migration cost are considered
during the score calculation.

[Step 1] Tier Specialty Matrix: To reflect the specialty,
we introduce a two-dimension tier-specialty matrix spc. For
example, “spc[t].P = 1, spc[t].B = 1 and spc[t].S = 0”
reflects that tier t is good at throughput and bandwidth, but
bad at storage capacity. In fact, this matrix can be extended
to a finer granularity to further control specialty degree, and
more types of resources can be included into this matrix, if
needed. Moreover, tiers are sorted in the order of high-to-
low-end (e.g., most-to-least-expensive-tier) in the matrix, and
this order is regarded as a priority order during the migration
decision making period.

[Step 2] Orthogonal Match between VM Demands and Tier
Specialties: The next question is “how to reflect each VM’s
performance on each tier AND reflect how good VMs can
utilize each tier’s specialty?”. Our solution is to introduce a
process called “orthogonal match” (denoted as “Ω”) to score
the “matchness”. This process is a per-VM-per-tier multiplica-
tion operation of “specialty” matrix and ‘‘VMCapRatMat”
matrix, i.e.,
currCapScore(t, v) = Ω(t, v)

=
[
spc[t].P × wetP [t], spc[t].B × wetB[t], spc[t].S × wetS[t]

]
×

VMCapRatMat[t][v].P
VMCapRatMat[t][v].B
VMCapRatMat[t][v].S

× VM [v].SLA× VM [v].conf

÷ (wetP [t] + wetB[t] + wetS[t]), (6)

where currCapScore gives the current capacity score, and
VMCapRatMat is the VM capacity utilization rate matrix.

[Step 3] Convolutional Performance Score: The final perfor-
mance score is a convolutional sum of historical score, current
epoch capacity score and penalty of corresponding migration
cost, i.e.,
tierV MPerfScore = agingFactor × histT ierV MPerfScore

+ currCapScore− wetMig ×migCost (7)

This process is also shown in Alg. 2 line 14. Specifically, to
avoid the case that some VMs are frequently migrated back
and forth between tiers (due to making decision only based on
recent one epoch which may contain I/O spikes or bursties),
AutoTiering needs to convolutionally consider history scores,
with a preset agingFactor to fadeout outdated scores. Current
capacity score currCapScore is calculated by the orthogonal
match procedure. Additionally, Alg. 2 lines 16-18 show the
procedure of migrationCost calculation.

V. PERFORMANCE EVALUATION

A. Evaluation Methodology
1) Implementation Details: We build AutoTiering on

VMware ESXi hypervisor 6.0.0 [1]. Table III summarizes the
server configuration of our implementation. Table IV further
shows the specs of each tier (each tier has multiple SSDs).
We set the specialty matrix such that tier 1 is good for
throughput and bandwidth performance, tier 2 is the secondary
performance tier but with larger capacity, and tier 3 is the
capacity tier to replace HDDs.

2) Workloads: To evaluate performance under different
algorithms, we use IOMeter [21] and FIO [22] to generate I/O
workloads to represent real world use cases. Table V shows
some statistical analysis of 14 used workloads. Each VM has

TABLE III: Host server configuration.
Component Specs
Host Server HPE ProLiant DL380 G9

Host Processor Intel Xeon CPU E5-2360 v3
Host Processor Speed 2.40GHz
Host Processor Cores 12 Cores

Host Memory Capacity 64GB DIMM DDR4
Host Memory Data Rate 2133 MHz

Host Hypervisor VMware ESXi 6.0.0

multiple VMDKs with different sizes, such as system disk,
datastore disk, and etc.

TABLE IV: Multi-tier flash drivers configuration.

Tier Model Protcl. IOPS MBPS PerDisk
R W R W Size(GB)

1 Samsung PM953 NVMe 240K 19K 1000 870 480
2 Samsung PM1633 SAS 200K 37K 1400 930 960
3 Samsung PM863 SATA 99K 18K 540 480 960

3) Comparison Candidates: We compare AutoTiering (AT)
with two other solutions [23]: (1) IDT: IOPS Dynamic Tiering,
implements dynamic configuration and placement using a
greedy IOPS-only criteria where higher IOPS extents move
to higher IOPS tiers; and (2) EDT: Extent-based Dynamic
Tiering, updates VM-tier assignment for every epoch, based
on both VM capacity and IOPS requirements. To fully utilize
the high speed all-flash datacenter, we slightly modified IDT
and EDT to support per-VMDK-based operation.

TABLE V: Resource demands of selected workloads.

Load Workload Represented Scenarios Thrupt. BW.
(IOPS) (BPS)

Heavy

BasicVerify SQL database server 95.5K 373M
SSDSteady System development 116K 453M
Zipf IOs Web apps 1942K 7585M
AsyncRead Read intensive apps 88.3K 345M
AsyncWrite Write intensive apps 6.65K 25M

Middle

Flow Big data frameworks 19.2K 150M
IOmeter File server 47K 205M
JESD High endurance apps 18.3K 136M
LatencyProfile Cloud system manager 39.6K 155M
SSDTest Hardware development 47K 205M

Light

RandZone Multi-user database 7.75K 30.3M
SurfaceScan Enterprise backup server 6.98K 436M
SyncRead Read intensive sync apps 6.65K 25M
SyncWrite Metadata sync server 4 16K

B. Study on Throughput, Bandwidth and Latency Changes
Fig. 3 illustrates the average throughput, bandwidth, and

normalized latency of all tiers over time for both read (Rd)
and write (Wt) I/Os. AutoTiering achieves up to 44.74% and
38.78% higher IOPS than IDT and EDT. Similar results can
be obtained for bandwidth and latency as shown in Figs. 3(b)
and (c). Fig. 4 depicts per-tier results to further show the per-
formance improvement brought by AutoTiering. We observe
that AutoTiering performs the best in terms of (both read
and write) throughputs, bandwidths and latencies on tier 1,
which is because the specialty matrix sets tier 1 to optimize
performance-sensitive workloads. On the other hand, we also
see that AutoTiering sometimes achieves lower throughput and
bandwidth in tier 2 and 3 compared with IDT and EDT. This
is because IDT is IOPS-only algorithm, which migrates high-
IOPS-demand (especially write I/O) workloads to tier 1, such

(a) Average throughput of all tiers (b) Average bandwidth of all tiers (c) Average normalized latency of all tiers

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

IDT EDT AT

Th
ro

ug
hp

ut
 (I

O
PS

)

Rd Thrupt Wt Thrupt

0

100

200

300

400

500

600

700

800

IDT EDT AT

Ba
nd

w
id

th
 (M

BP
S)

Rd BW Wt BW

0%

20%

40%

60%

80%

100%

IDT EDT AT

N
or

m
al

iz
ed

 L
at

en
cy

 (%
) Rd Lat Wt Lat

Fig. 3: Average throughput, bandwidth, and latency of all tiers.

(a) Average throughput of each tier

0

5,000

10,000

15,000

20,000

25,000

T1 Rd Thrupt T2 Rd Thrupt T3 Rd Thrupt T1 Wt Thrupt T2 Wt Thrupt T3 Wt Thrupt

Th
ro

ug
hp

ut
 (I

O
PS

)

IDT EDT AT

0

50

100

150

200

250

300

350

T1 Rd BW T2 Rd BW T3 Rd BW T1 Wt BW T2 Wt BW T3 Wt BW

Ba
nd

w
id

th
 (M

BP
S)

IDT EDT AT

0%

20%

40%

60%

80%

100%

T1 Rd Lat T2 Rd Lat T3 Rd Lat T1 Wt Lat T2 Wt Lat T3 Wt Lat

N
or

m
al

iz
ed

 L
at

en
cy

 (%
)

IDT EDT AT

(b) Average bandwidth of each tier

(c) Average normalized latency of each tier

Fig. 4: Average throughput, bandwidth, and latency of each tier.

(a) CDF of throughput of all tiers

(b) CDF of bandwidth of all tiers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25,000 50,000 75,000 100,000 125,000 150,000

P[
<x

]

Throughput of all tiers (IOPS)

IDT

EDT

AT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200 400 600 800 1,000 1,200 1,400 1,600

P[
<x

]

Bandwidth of all tiers (MBPS)

IDT

EDT

AT

Fig. 5: CDF of throughput and bandwidth of all tiers.

that the write IOPS is optimized. Similarly, EDT considers
both IOPS and capacity, and thus has slightly better write IOPS
compared to AutoTiering in the capacity tier 3. It is worth to
mention that AutoTiering achieves the lowest latencies in all
cases except write latency in tier 2 (as shown in Fig. 4(c) 5th
column), because AutoTiering migrates many VMDKs that
have large average I/O size (high write bandwidth), and thus,
as a tradeoff, the latency is increased. Moreover, Fig. 5 depicts
the distribution of total throughput and bandwidth of all tiers
for different algorithms. From Fig. 5(a), we observe that under
AutoTiering (red curve), majority of I/Os has more than 100K
IOPS and even half of them have more than 125K IOPS. In

contrast, 90% of I/Os are less than 100K IOPS (blue curve)
under IDT, and almost all I/Os from IDT are less than 100K
(green curve). Similarly, from Fig. 5(b), we can see that the
majority (around 90%) of IDT and EDT I/Os are less than
1,200 MBPS, while more than half of AutoTiering’s I/Os can
achieve larger than 1,200 MBPS bandwidth.
C. Study on Runtime Distribution of Resource Utilization

Fig. 6 shows runtime changes of throughput, bandwidth and
latency distribution across tiers over time. We observe that
the areas in (c) and (f) are larger than those in (a)-(b), and
(d)-(f), respectively. Area in (i) is also much smaller than
those in (g)-(h). This verifies our observations in Sec. V-B
that AutoTiering achieves better throughput and bandwidth
performance than IDT and EDT. We also observe in (a) to
(f) that area of each tier in AutoTiering is “thicker” than that
in IDT and EDT (after AutoTiering’s warming up periods from
0-3 epochs). This indicates that AutoTiering can better utilize
throughput and bandwidth resources of each tier by proper and
less migrations. In (i), we see that the majority of the latency
of AutoTiering is located in tier 3 (the write latency “T3 Rd
Lat”), which is because that tier 3 is regarded as the capacity
tier to replace HDD. As a result, AutoTiering migrates read-
intensive VMs with large VMDKs to leverage tier 3, and leaves
tiers 1 and 2 for other write-intensive workloads.
D. Study on Migration Overhead

To investigate the migration overhead of three algorithms,
we show the normalized temporal migration cost results in
Fig. 7. The blue bars show the normalized total migrated
data size, and the green bars show the normalized number
of VMs that are migrated (multiple migrations on a single
VM is counted as 1). The former is to reflect the “working
volume size” and the latter is to reflect the “working set size”.
AutoTiering performs best among the three, since it migrates
less data and interrupts less VMs, which saves lots of system
resources. In summary, AutoTiering chooses the best tier for
each VM for better performance and prevents unnecessary
migrations due to I/O spikes, ascribed to its comprehensive
decision which is based on a more accurate performance
estimation method.

VI. CONCLUSION

We present a novel data placement manager “AutoTiering”
to optimize the virtual machine performance by allocating
and migrating them across multiple SSD tiers in the all-
flash datacenter. AutoTiering is based on an optimization
framework to provide the global best migration and allocation
solution over runtime. We further proposed an approximation
algorithm to solve the problem in a polynomial time, which

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

1 2 3 4 5 6 7 8 9 10 11 12 13

Th
ro

ug
hp

ut
 (I

O
PS

)

Epoch

T1 Rd Thrupt T1 Wt Thrupt
T2 Rd Thrupt T2 Wt Thrupt
T3 Rd Thrupt T3 Wt Thrupt

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

1 2 3 4 5 6 7 8 9 10 11 12 13

Th
ro

ug
hp

ut
 (I

O
PS

)

Epoch

T1 Rd Thrupt T1 Wt Thrupt
T2 Rd Thrupt T2 Wt Thrupt
T3 Rd Thrupt T3 Wt Thrupt

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

1 2 3 4 5 6 7 8 9 10 11 12 13

Th
ro

ug
hp

ut
 (I

O
PS

)

Epoch

T1 Rd Thrupt T1 Wt Thrupt
T2 Rd Thrupt T2 Wt Thrupt
T3 Rd Thrupt T3 Wt Thrupt

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

1 2 3 4 5 6 7 8 9 10 11 12 13

Ba
nd

w
id

th
 (M

BP
S)

Epoch

T1 Rd BW T1 Wt BW
T2 Rd BW T2 Wt BW
T3 Rd BW T3 Wt BW

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

1 2 3 4 5 6 7 8 9 10 11 12 13

Ba
nd

w
id

th
 (M

BP
S)

Epoch

T1 Rd BW T1 Wt BW
T2 Rd BW T2 Wt BW
T3 Rd BW T3 Wt BW

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

1 2 3 4 5 6 7 8 9 10 11 12 13

Ba
nd

w
id

th
 (M

BP
S)

Epoch

T1 Rd BW T1 Wt BW
T2 Rd BW T2 Wt BW
T3 Rd BW T3 Wt BW

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13

N
or

m
al

iz
ed

 L
at

en
cy

 (%
)

Epoch

T1 Rd Lat T1 Wt Lat
T2 Rd Lat T2 Wt Lat
T3 Rd Lat T3 Wt Lat

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13

N
or

m
al

iz
ed

 L
at

en
cy

 (%
)

Epoch

T1 Rd Lat T1 Wt Lat
T2 Rd Lat T2 Wt Lat
T3 Rd Lat T3 Wt Lat

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13

N
or

m
al

iz
ed

 L
at

en
cy

 (%
)

Epoch

T1 Rd Lat T1 Wt Lat
T2 Rd Lat T2 Wt Lat
T3 Rd Lat T3 Wt Lat

(a) Throughput of each tier under IDT (b) Throughput of each tier under EDT (c) Throughput of each tier under AT

(d) Bandwidth of each tier under IDT (e) Bandwidth of each tier under EDT (f) Bandwidth of each tier under AT

(g) Normalized latency of each tier under IDT (h) Normalized latency of each tier under EDT (i) Normalized latency of each tier under AT

Fig. 6: Runtime changes of throughput, bandwidth, and latency of each tier under different algorithms.

0%

20%

40%

60%

80%

100%

IDT EDT AT

Migrated Data (Bytes)

VM Migrated (#)

Fig. 7: Normalized migration cost results.

considers both historical and predicted performance factors,
and estimated migrating cost. Experimental results show that
AutoTiering can significantly improve system performance.

REFERENCES

[1] “VMware ESXi.” www.vmware.com/products/vsphere-hypervisor.html.
[2] T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new begin-

ning for information technology,” Computing in Science & Engineering,
vol. 19, no. 2, pp. 41–50, 2017.

[3] D. G. Andersen and S. Swanson, “Rethinking flash in the data center,”
IEEE micro, vol. 30, no. 4, pp. 52–54, 2010.

[4] Ssd market history. [Online]. Available: http://www.storagesearch.com/
chartingtheriseofssds.html

[5] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K page replacement
algorithm for database disk buffering,” in Proceedings of the 1993 ACM
SIGMOD international conference on Management of data, Washington,
DC, 1993, pp. 297–306.

[6] M. Kampe, P. Stenstrom, and M. Dubois, “Self-correcting lru replace-
ment policies,” in Proceedings of the 1st conference on Computing
frontiers, Ischia, Italy, 2004, pp. 181–191.

[7] T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” in Proceedings of the 20th
International Conference on Very Large Data Bases, San Francisco, CA,
1994, pp. 439–450.

[8] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algorithm
for second level buffer caches,” in Proceedings of the 2001 USENIX
Annual Technical Conference, Boston, MA, 2001, pp. 91–104.

[9] D. Lee, J. Choi, J.-H. Kim, S. Noh, S. L. Min, Y. Cho, and C. S. Kim,
“LRFU: A spectrum of policies that subsumes the least recently used
and least frequently used policies,” IEEE Transactions on Computers,
vol. 50, no. 12, pp. 1352–1361, 2001.

[10] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[11] M. Hoseinzadeh, M. Arjomand, and H. Sarbazi-Azad, “Reducing access
latency of mlc pcms through line striping,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 3, pp. 277–288, 2014.

[12] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu, “vCacheShare:
automated server flash cache space management in a virtualization
environment,” in USENIX ATC, 2014.

[13] K. Krish, A. Anwar, and A. R. Butt, “HATS: A Heterogeneity-aware
Tiered Storage for Hadoop,” in Cluster, Cloud and Grid Computing,
2014 14th IEEE/ACM International Symposium on, 2014.

[14] T. Pritchett and M. Thottethodi, “Sievestore: A highly-selective,
ensemble-level disk cache for cost-performance,” in Proceedings of the
37th annual international symposium on Computer architecture, Saint-
Malo, France, 2010, pp. 163–174.

[15] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li, “iAware: Making live
migration of virtual machines interference-aware in the cloud,” IEEE
Transactions on Computers, vol. 63, no. 12, pp. 3012–3025, 2014.

[16] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource pool
management: Reactive versus proactive or let’s be friends,” Computer
Networks, vol. 53, no. 17, pp. 2905–2922, 2009.

[17] T. Setzer and A. Wolke, “Virtual machine re-assignment considering mi-
gration overhead,” in Network Operations and Management Symposium
(NOMS), 2012 IEEE. IEEE, 2012, pp. 631–634.

[18] Z. Fan, D. H. Du, and D. Voigt, “H-ARC: A non-volatile memory
based cache policy for solid state drives,” in Mass Storage Systems and
Technologies (MSST), 2014 30th Symposium on. IEEE, 2014, pp. 1–11.

[19] “vsphere apis for i/o filtering (vaio) program,” https://code.vmware.com/
programs/vsphere-apis-for-io-filtering.

[20] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-CAVE:
Effective ssd caching to improve virtual machine storage performance,”
in Proceedings of the 22nd international conference on Parallel archi-
tectures and compilation techniques. IEEE Press, 2013, pp. 103–112.

[21] “Intel IOMeter,” http://www.iometer.org.

[22] “FIO: Flexible I/O Tester,” http://linux.die.net/man/1/fio.

[23] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and R. Rangaswami,
“Cost effective storage using extent based dynamic tiering.” in FAST,

vol. 11, 2011, pp. 20–20.

