
1

Docker Container Scheduler for I/O Intensive
Applications running on NVMe SSDs

Janki Bhimani∗, Zhengyu Yang∗, Ningfang Mi∗, Jingpei Yang†,
Qiumin Xu†, Manu Awasthi ‡, Rajinikanth Pandurangan† and Vijay Balakrishnan†

Northeastern University - Boston∗, Samsung Semiconductor, Inc - San Jose†, IIT - Gandhinagar ‡

Abstract—
By using fast back-end storage, performance benefits of a lightweight container platform can be leveraged with quick I/O response.
Nevertheless, the performance of simultaneously executing multiple instances of same or different applications may vary significantly
with the number of containers. The performance may also vary with the nature of applications because different applications can exhibit
different nature on SSDs in terms of I/O types (read/write), I/O access pattern (random/sequential), I/O size, etc. Therefore, this paper
aims to investigate and analyze the performance characterization of both homogeneous and heterogeneous mixtures of I/O intensive
containerized applications, operating with high performance NVMe SSDs and derive novel design guidelines for achieving an optimal
and fair operation of the both homogeneous and heterogeneous mixtures. By leveraging these design guidelines, we further develop a
new docker controller for scheduling workload containers of different types of applications. Our controller decides the optimal batches of
simultaneously operating containers in order to minimize total execution time and maximize resource utilization. Meanwhile, our controller
also strives to balance the throughput among all simultaneously running applications. We develop this new docker controller by solving
an optimization problem using five different optimization solvers. We conduct our experiments in a platform of multiple docker containers
operating on an array of three enterprise NVMe drives. We further evaluate our controller using different applications of diverse I/O
behaviors and compare it with simultaneous operation of containers without the controller. Our evaluation results show that our new
docker workload controller helps speed-up the overall execution of multiple applications on SSDs.

Keywords—Docker containers, Flash-Memory, SSDs, NVMe, MySQL, Cassandra, FIO, Database, Scheduling, Controller

F

1 INTRODUCTION

Docker containers are gaining traction due to their sim-
ple and efficient operation characteristics [1]. Container
technology is projected to be the backbone on which
software development cycle can be shortened [2]–[4].
Containers and virtual machines have similar resource
isolation and allocation benefits but different architec-
tural approaches, which allows containers to be more
portable and efficient compared to virtual machines [5],
[6]. Among different container technologies (e.g., docker,
LxC, runC), docker has become one of the major tech-
nologies due to its ease of deployment and scalability.

Containers V.S. Virtual Machines: The two virtualiza-
tion technologies of virtual machine (VM) and docker
container each have their own specializations and bene-
fits. Understanding their features and limitations can help
us improve the performance of applications running in
these virtualization environments. The recent advance-
ment of docker is different from traditional VMs. First,
the VM hypervisor manages resources among different
virtual machines in a distributed mode, where each VM is
assigned the maximum limit of resources it can use. Un-
like VM, containerized virtualization performs central-
ized resource management among different containers.
Resources like processing unit, memory and page cache
are shared among all containers. No prior resource alloca-
tions are done and all containers compete for the shared
resources at runtime. As a result, resource contention
and performance interference become more severe when
using Docker containers than using VMs. Thus, it is more

urgent and necessary to have an effective scheduling
algorithm to launch Docker containers in order to miti-
gate such performance interference and improve resource
utilization in the Docker container environment. Second,
each VM has their own VM image that consists of guest
OS and libraries. This type of virtualization results in
better security and isolation, but causes higher startup
overhead. Thus, a casual practice is to launch all VMs at
the beginning. On the other side, as Docker containers
are lightweight without guest OS, they can be launched
when needed. This thus gives us a good opportunity to
dynamically schedule and launch Docker containers at
runtime.

Containerized Database using NVMe SSDs: While
characterizing performance of applications on a bare
metal or virtual machine is not new [7], [8], I/O inten-
sive dockerized applications deserve a special attention.
First, the lightweight characteristic of docker containers
promotes the simultaneous use of multiple containers to
deploy multiple instances of same or different applica-
tions [9]. Second, the resource contention increases with
the increasing number of containerized instances, result-
ing in performance variation of each instance. However,
the behavior of simultaneous instances of different appli-
cations has not been thoroughly investigated. Third, with
the world looking forward towards high performance
SSDs, such as NVMe (Non-Volatile Memory express) de-
vices, for their massive storage needs, more performance
benefits could be gained on I/O intensive dockerized
applications by using these NVMe SSDs as the backend.

2

Given the state of the art, it is highly demanded to
better understand the performance of different types of
workloads and applications for NVMe high end SSDs.

Performance Characterization: We segregate the ap-
plication layer setup into homogeneous and heterogeneous.
The container instances of a single database application
with same workload characteristics are called homoge-
neous as all such containers would compete for similar
resources. For example, the setup is called homogeneous
if all containers are of MySQL running TPC-C. While,
the container instances of different database applications
with different workloads are called heterogeneous. For
example, the setup is called heterogeneous if some con-
tainers are of MySQL running TPC-C and simultane-
ously some other containers are of Cassandra running
Cassandra-stress. We remark that the above examples are
to project the idea of a generic class of homogeneous and
heterogeneous mix of an application. In this paper, we
first characterize the operation of docker containers on
NVMe SSDs considering the number of simultaneously
operating containers and the application. We observe that
for a homogeneous environment with the increase in
number of containers, the performance can initially get
better but eventually may saturate and even worse de-
grade due to limitation of hardware resources. For a het-
erogeneous environment, we observe that the throughput
of some applications degrades significantly when they
run simultaneously with some other applications.

Docker Workload Controller: Docker containers are
a group of processes that belong to a combination of
Linux namespaces and control groups (cgroups). Using
cgroups [10] to manage the resources between the con-
tainers helps to prioritize instances and achieve isolation.
Resource sharing is the main feature provided by the
containerized technology. By default, a container has
no resource usage constraints and thus, if needed, can
use (and share) resource as much as the hosts kernel
scheduler allows. Cgroups provides ways to control the
fraction of each resource (e.g., memory, CPU, or block
IO) that a container can use. However, setting such fixed
limits of resource usage actually restricts online resource
sharing and overall resource utilization. Thus, in this
work, we propose a docker container scheduler that is
able to take advantage of resource sharing to maximize
resource utilization and avoid application interference
by determining which containers should be operated
simultaneously in the same batch.

In order to improve the performance based on our
derived design guidelines from the characterization, we
build a docker workload controller to schedule the execu-
tion of the batches of simultaneously operating contain-
ers. We model this optimization problem into a mathe-
matical objective function and its constraints. We evaluate
our controller with five different optimization solvers
and illustrate the performance results when compared
to simultaneous operation of containers without the
controller. Our experimental results show that our new
docker workload controller helps speed-up the overall
execution of multiple applications on SSDs.

In this paper, we aim to explore the behavior of dif-

ferent real containerized database applications with high
performance NVMe SSDs and develop a controller to au-
tomatically schedule the operation of different containers.
The summary of major contributions of this paper is as
follows:

• Understanding the performance of write and read
intensive containerized workloads for a homoge-
neous application setup.

• Analyzing and improving resource utilization and
fair sharing of resources among different applica-
tion containers.

• Investigating application throughput throttle for si-
multaneous operations of different application con-
tainers.

• Proposing novel design guidelines for optimal and
fair operations of mixed dockerized applications on
high performance NVMe SSDs.

• Developing a docker workload controller based on
derived guidelines to minimize the overall through-
put, maximize resource utilization and minimize
application interference such that the overall oper-
ation of simultaneously operating application con-
tainers can be sped up.

The remainder of this paper is organized as follows.
In Section 2, we describe the related work. In Section 3,
we introduce docker container’s data storage and our ex-
perimental setup. In Section 4, we explore homogeneous
docker containers and heterogeneous docker containers.
In Section 5, we summarize our results as guidelines and
in Section 6, we develop a new controller to packetize
workload containers based on derived guidelines. Finally,
we draw our conclusion and discuss the future work in
Section 7.

2 RELATED WORK

The docker containers of most of the database appli-
cations like Redis, MySQL etc. are available for down-
load [1]. The reported increase in performance with the
use of docker containers over the virtual machines have
attracted many users in a very short time. Charles Ander-
son introduced docker [2] as container virtualization tech-
nology, which is very light-weight compared to virtual
machines. Docker containers are becoming the current
mainstay mechanism [11]–[13] for deploying applications
in public and private clouds.

On the other hand, in order to support parallel data
intensive applications at application layer with multi-
ple database application containers operating simultane-
ously, a very fast storage is required. SSDs were initially
used as a bufferpool to cache data between RAM and
hard disk [14]–[18]. But as the $/GB of flash drives kept
decreasing the use of SSDs as primary storage became
prominent [19], [20]. Now-a-days, the use of SSDs in
enterprise server and data center is increasing. In [21]
and [22], authors explore the SSDs as main storage
for database applications. Extensive research has also
been performed on enhancement of energy efficiency of
database applications using SSDs [23]–[26]. Furthermore,
with the world looking forward towards high perfor-

3

mance SSDs for their massive storage needs, NVMe is
emerging as the protocol for communication with high
performance SSDs over PCIe [27].

The design of traditional clusters like Mapreduce
Hadoop mainly focuses on running massive jobs, but
container clusters are often used to run dozens of
small instances that need to be organized to optimize
data storage and computational power. Thus, the tradi-
tional VM schedulers such as Apache YARN [28] and
ZooKeeper [29] are not efficient if applied directly to
docker containers. On the other hand, the existing con-
tainer scheduling techniques such as Docker Swarm [30]
and Mesos [31] do not control the starting time of dif-
ferent containers on a single host. Moreover, the current
approaches of container scheduling aim to maximize
resource utilization. However, we found that these ap-
proaches actually suffer from application performance in-
terference due to the shared OS resources among multiple
containers.

We studied existing literature on well known opti-
mization problems like different variations of bin pack-
ing [32]–[35], knapsack [36] and job scheduling [37]–[39],
but did not find a good solution that can be directly
applied to our problem. Thus, in this work, we develop
a solution to a variation of the classic bin-packing prob-
lem with different problem constraints and interference
penalties. To the best of our knowledge, this is the first at-
tempt to investigate the performance of such a controller
in a system with dockerized applications. In this paper,
we aim to explore the behavior of different real container-
ized database applications with high performance NVMe
SSDs and develop a controller to automatically schedule
the operation of different containers.

3 HARDWARE ARCHITECTURE AND APPLICA-
TION LAYOUT

3.1 Container Data Storage

Docker provides application virtualization using a con-
tainerized environment. Docker image is an inert, im-
mutable, file that is essentially a snapshot of a container.
Multiple docker containers can be instantiated with an
application image. In order to maintain lightweight char-
acteristics, it is advisable to keep the installation stack
within the container as small as possible for better per-
formance. The data management of containers is super-
intend either by docker storage drivers (e.g. OverlayFS,
AUFS, Btrfs, etc.) or by docker data volumes.

Docker daemon can only run one storage driver, and
all containers created by that daemon instance use the
same storage driver. Storage drivers operate with copy-
on-write (CoW) technique. The fundamental idea of CoW
is that if multiple callers ask for resources which are
initially indistinguishable, then the pointers to the same
resource can be returned. This function can be maintained
until a caller tries to modify its ”copy” of the resource,
at which point a true copy is created. For applications
that generate heavy write workloads CoW is not useful.
Thus, for write intensive application it is advisable to
maintain persistent copy of data. Docker volume is a

Fig. 1. Containerized system on flash volume of SSDs

mechanism to automatically provide data persistence for
containers. A volume is a directory or a file that can be
mounted directly inside the container. The biggest benefit
of this feature is that I/O operations through this path
are independent of the choice of the storage driver, and
should be able to operate at the I/O capabilities of the
host.

In this paper, we characterize the performance of I/O
intensive applications using the persistent storage option
of docker data volumes. Figure 1 shows the stacked I/O
path of underlying hardware. As shown in Figure 1 (f),
I/O requests are generated by containerized workloads.
Data volume is a specially designated directory within
one or more containers that bypasses the docker file
system. I/Os on the host can be managed by the host
backing file system such as XFS or EXT4 (see Figure 1
(e)). In all our experiments, we use XFS as the backing
file system. This backing file system relays on a stack of
logical and physical volumes. These logical and physical
volumes are constructed over an array of NVMe SSDs,
see Figure 1 (a), (c), (d).

3.2 Experimental Setup

We built a platform consisting of multiple docker con-
tainers operating on an array of three enterprise NVMe
drives (3TB) in order to provide higher disk bandwidth
as shown in Figure 1 (a). The stack of host OS, docker
engine and docker application images is maintained on
a separate disk that is different from the one used for
storing containerized application files and databases (see
Figure 1 (b)).

Each physical volume that maps the full (i.e., 100%)
capacity of one SSD, is created through LVM (Logical Vol-
ume Manager) (see Figure 1 (c)). These multiple physical
volumes are combined to form a single stripped logical
volume using lvcreate [40], [41]. The data written to
this logical volume is laid out in a stripped fashion
across all the disks by the file system. The size of this
logical volume is equal to the total capacity of all SSDs.
Table 1 gives the detailed hardware configuration of our
platform.

4

TABLE 1: Hardware Configuration

CPU type Intel(R) Xeon(R)
CPU E5-2640 v3

CPU speed 2.60 GHz
CPU #cores 32 hyper-threaded

CPU cache size 20480 KB
CPU Memory 128 GB

OSType linux
Kernel Version 4.2.0-37-generic

Operating System Ubuntu 16.04 LTS
Backup storage Samsung PM953 960 GB
Docker version 1.11
MySQL version 5.7

Cassandra version 3.0
FIO version 2.2

We analyze the performance of different workloads of
relational database and NoSQL database applications like
MySQL, MongoDB, RocksDB, Canssandra, ForestBD etc.
We observe that operation of relational database applica-
tions varied significantly from that of NoSQL database
applications. The relational database applications per-
forms comparatively higher proportion of random in-
put/output operations (as shown in Fig. 8)resulting in
higher memory usage than NoSQL database applica-
tions [42]–[45]. Thus here, we choose to show and discuss
our results using different workloads of MySQL [46]
(relation database) and Cassandra [47] (NoSQL database)
for our docker performance analysis. These two database
applications are not only the most popular relational
database and NoSQL database applications, but also
widely adopted by companies using docker for produc-
tion. Respectively, we run the workloads of TPC-C bench-
mark [48] in MySQL container and Cassandras built-in
benchmark tool, cassandra-stress [49] for our experiments.

We evaluate two different scenarios of homogeneous
and heterogeneous container traffic. The homogeneous
container traffic is caused by containers running the same
application under the same workload resources (e.g.,
client threads, data set size, read/write ratio, etc.). The
heterogeneous container traffic is caused by containers
running different workloads and different applications.

4 EXPERIMENTAL RESULTS

In this section, we present the results to show the
scaling of containerized docker instances on SSDs. We
experiment with increasing number of simultaneously
operating containerized instances. We evaluate two dif-
ferent types of containerized setup: 1)Homogeneous and
2)Heterogeneous. For each, we use the FIO benchmark [50]
to cross verify the observations which we obtain from
I/O intensive applications. We will use NVMe SSDs in-
terchangeably with disks for the rest of the paper to refer
to persistent storage devices. Note that everywhere we
mention ”write workload”, we mean update operation.
We observe and analyze interesting characteristics while
running database workloads in containers. We notice that
8 to 16 simultaneous containers are sufficient to discuss

all our interesting observations. Furthermore, we did
consider more (> 25) docker containers in our evaluation.
But, our experimental results show that the resources
(e.g., disk or CPU) have already been saturated when
we have 8 ∼ 16 containers simultaneously running in
the system, see Figs. 2 to 11. Therefore we discuss our
observations by using sufficient number of containers.

4.1 Homogeneous Docker Containers

We explore homogeneous docker containers by using
MySQL and Cassandra applications. We first experiment
with increasing number of MySQL containers to observe
that application throughput scales due to increasing CPU
utilization although disk bandwidth utilization saturates.
Second, we experiment with Cassandra 100% write (i.e.
update) workload, which also scales with increasing
number of containers but is limited by saturation of CPU
utilization. Third, we experiment with Cassandra 100%
read workload, where we note an interesting observation
of throughput valley. Then, we investigate the reasons
behind this throughput valley to be page caching and
memory. Lastly, we cross verify the throughput valley
observation by constructing a similar FIO benchmark
workload setup.

Figure 2 shows the results of standalone container-
ized instances of MySQL. The workload configuration
of MySQL is given in Table 2. Figure 2 (a) shows that
containerized instances of MySQL (TPC-C workload)
scale well with increasing number of containers. We
observe that in-spite of the decreasing throughput of
each individual containerized instance, the cumulative
throughput of MySQL containers increases with increas-
ing number of simultaneously executing containers. The
cumulative throughput is the sum of throughput of all
simultaneously operating containers. Figure 2 (b) and (c)
shows that disk bandwidth utilization gets saturated at
four simultaneous containers, but cumulative throughput
keeps increasing with higher CPU utilization on increas-
ing number of simultaneously executing containers. Fig-
ure 3 (a) further presents the average 95 percentile latency
across all containers as a function of number of containers
under the homogeneous MySQL TPC-C workload. We
observe that average 95th percentile latency of simulta-
neously executing containers increases with increasing
number of simultaneous containers. Thus, we notice that
there exists a trade off between cumulative throughput
and I/O latency when we add more containers.

The similar experiments were conducted using a Cas-
sandra application for 100% writes (Cassandra W) and
100% reads (Cassandra R). The workload configuration
of Cassandra W and Cassandra R are given in Table 2.
Figure 4 (a), shows that containerized instances of Cas-
sandra 100% writes scales with increasing number of
containers till six simultaneous containers. From Figure 4
(b), we observe that due to saturation of CPU utiliza-
tion, the throughput saturates for further increase in
number of containers. Even after throughput saturates
at six containers, note that the latency keeps increasing
with increasing number of simultaneous containers (see
Figure 4 (a) and Figure 3 (b)).

5

(a) (b) (c)

Fig. 2. Homogeneous with MySQL (TPC-C workload). (a) MySQL throughput with evaluation metric as the number of
transactions completed per minute (TpmC), (b) CPU utilization, and (c) Disk bandwidth utilization

(a) (b) (c)

Fig. 3. Average latency for all running containers, (a) homogeneous MySQL (TPC-C workload), (b) homogeneous
Cassandra W, (c) heterogeneous MySQL (TPC-C workload) + Cassandra (Cassandra-stress Cassandra W workload)

TABLE 2: Homogeneous Workload Configuration

Workload
MySQL TPC-C # Warehouses - 1250 # Connections - 100

Cassandra W Cassandra-stress 100% Writes (i.e. Updates) # Records - 50 million Record size - 1KB
Cassandra R Cassandra-stress 100% Reads # Records - 50 million Record size - 1KB

Thus, from the above two experiments (i.e., MySQL
TPC-C workload and Cassandra W workload of Cas-
sandra), we notice that effects of CPU as bottleneck are
more drastic on overall performance when compared
to disk as bottleneck. So, an optimal operating num-
ber of simultaneous containers for achieving maximum
throughput and minimum possible latency across all
containers would be the number of containers at which
CPU gets saturated.

Next, we investigate the performance under the 100%
read workload using Cassandra R, see Table 2 for work-
load details. Figure 5 (a) shows the jagged behavior of
containerized instances. The exceptionally high perfor-
mance can be observed till the number of containerized
instances is increased upto three. This is because, after
fetching data once from disk into main memory, the read
operations are performed mainly from memory and page
cache. The combined size of four and more containers
is not sufficient to fit in page cache and memory. Thus,
the data is paged in and out leading to higher number

of disk accesses. As disk access latency is much higher
than the page cache and memory access latency, so when
the number of simultaneous containers is more than four,
throughput drops because of a large amount of disk
I/O operations. The throughput then becomes limited by
disk bandwidth. Figure 5 (b) shows that the maximum
CPU utilization for read-only operations is lower (i.e.,
65%) when compared to that of the write-only operations
(i.e., 90% in Figure 4 (b)). Figure 5 (c) further shows
that initially for a small number of simultaneous con-
tainerized instances most read operations are performed
from memory keeping the disk bandwidth utilization
low. But, when the throughput valley is observed at four
simultaneous containers, most operations are performed
from disk. This leads to the increase and the saturation
of disk bandwidth utilization.

In order to cross verify the above observed anomalous
phenomenon of throughput valley, we use I/O generat-
ing benchmark called FIO (Flexible I/O) [50]. We develop
FIO workload to generate random reads that replicates

6

(a) (b) (c)

Fig. 4. Homogeneous with Cassandra (Cassandra W workload). (a) Cassandra throughput, (b) CPU utilization, (c) Disk
bandwidth utilization

(a) (b) (c)

Fig. 5. Homogeneous for Cassandra (Cassandra R workload). (a) Cassandra throughput, (b) CPU utilization, (c) Disk
bandwidth utilization

the I/O behavior of Cassandra R workload. The size of
each containerized FIO instance is set similar to the data
set size of Cassandra container running the Cassandra-
stress read workload. In order to observe the effect of
operations from memory, page cache is not bypassed in
this FIO experiment.

Fig. 6. Homogeneous for FIO (4KB random read buffered
IO)

Figure 6 shows the results of containerized instances of
the FIO benchmark. In order to obtain the similar setup as
that of the Cassandra R experiments, each FIO container
operates on a file of size 50GB. The FIO workload is

random read of size 4K, job size of 32 and IO depth
of 32. Figure 6 also shows the throughput valley similar
as observed in Figure 5. Figure 6 further shows that the
cumulative throughput of read operations observed for 6,
7 and 8 simultaneous instances is very close to the rated
throughput of disk. Thus the above observations cross
verifies the throughput valley effect.

In summary, for a write intensive application, if CPU
is not the bottleneck, then increasing number of homo-
geneous containers increases throughput till CPU gets
saturated. On the other hand, for write intensive appli-
cations, once CPU becomes saturated then increasing the
number of containers only increases the latency without
any improvement in throughput. Finally, if an application
is read intensive and the size of the database that is
being accessed by the application executing within the
container is small, then the majority of its operations can
be performed from page cache and memory. For such
cases, it is advisable to limit the number of containers
before falling into the throughput valley.

4.2 Heterogeneous Docker Containers

We explore heterogeneous docker containers by run-
ning MySQL and Cassandra applications simultaneously.
We make an interesting observation that while oper-
ating simultaneously, the throughput of MySQL de-
grades to more than 50% of its standalone through-
put observed in homogeneous experiments. But, the

7

throughput of Cassandra degrades only around 16%
of its standalone throughput observed in homogeneous
experiments. Thus, we say that an unfairness behavior
is observed in this heterogeneous container mix. Here,
fairness means that when N application containers are co-
scheduled to run simultaneously, none of the application
containers degrade their throughput more than 1/N% of
their standalone throughput. In order to investigate the
reason behind the observed unfair throughput scarifies,
we experiment with different types of heterogeneous
mixes such as, 1) Cassandra with FIO random write
workload; 2) Cassandra with FIO sequential write work-
load; and 3) Cassandra with FIO random read workload.
For all the heterogeneous experiments, we report the
results for equal number of operating containers of both
applications (i.e., total 16 containers would pertain to 8
containers of each application).

(a) (b)

Fig. 7. Heterogeneous: Simultaneous Cassandra (Cas-
sandra W workload) and MySQL (TPC-C workload). (a)
Cassandra throughput, (b) MySQL throughput

Figure 7, shows the results of simultaneously operat-
ing containerized instances of Cassandra and MySQL
with workload configurations of Cassandra W and TPC-
C as given in Table 2. Figure 7 (a) and (b), shows
the application throughput of Cassandra and MySQL,
respectively. For example, the first bar of Figure 7 (a),
represents the throughput of Cassandra, when in total
two instances, each one of Cassandra and MySQL are
running simultaneously. Thus we show results up to
16 containers that includes 8 Cassandra and 8 MySQL
containers running simultaneously. We observe the unfair
throughput throttle between Cassandra and MySQL. The
best throughput of standalone homogeneous Cassandra
instances from Figure 4 is 60K op rate. The best through-
put with homogeneous MySQL instances from Figure 2
is 18K TpmC for 8 concurrent TPC-C containers. But,
for heterogeneous experiments of Cassandra and MySQL
containers running simultaneously, the best throughput
observed for Cassandra and MySQL from Figure 7 (a)
and (b) is 50K op rate and 9K TpmC, respectively. While
comparing the throughput of applications in standalone
homogeneous deployment and heterogeneous deploy-
ment, we observe that the average throughput degrada-
tion of Cassandra containers is around 16% (i.e., from
60K to 50K op rate). But throughput degradation of
MySQL containers is around 50% (i.e., 18K to 9K TpmC).
Thus, MySQL containers sacrifice higher than Cassandra
containers when both the application containers are op-
erated simultaneously in the heterogeneous setup. From

0%
20%
40%
60%
80%
100%

1c
as
s

2c
as
s

3c
as
s

4c
as
s

5c
as
s

6c
as
s

7c
as
s

8c
as
s

%	Sequential	Writes %	Random	Writes

(a)

0%
20%
40%
60%
80%
100%

1m
ys
ql

2m
ys
ql

3m
ys
ql

4m
ys
ql

5m
ys
ql

6m
ys
ql

7m
ys
ql

8m
ys
ql

%	Sequential	Writes %	Random	Writes

(b)

Fig. 8. Percentage of Sequential and Random Writes by: (a)
Cassandra Application, (b) MySQL Application.

Figure 3 (c), we also observe that for this heterogeneous
setup, latency of MySQL increases at higher rate when
compared to Cassandra.

This is an interesting observation and we believe the
nature of applications plays an important role. While
operating simultaneous containers of different applica-
tions in the heterogeneous setup, we observed better
resource utilization like CPU and disk. However, we
would not like to group such application containers
together, because in such a combination the throughput
and performance of some applications were sacrificed
drastically.

We anticipate that the reason for such unfair through-
put distribution might be the DRAM memory con-
troller, which favors sequential writes more than ran-
dom writes [51]–[53]. Cassandra, which is based on Log
Structured Merge (LSM) trees, will always do a lot more
sequential writes than MySQL [42]–[45]. Figures 8(a)
and 8(b) show the proportion of sequential and ran-
dom writes among total write I/Os in Cassandra and
MySQL for Cassandra W and TPC-C workloads. From
Figure 8(a) we see that, for any number of simultane-
ously operating Cassandra containers, the proportion of
sequential writes is above 80%. On contrary, Figure 8(b)
shows that, MySQL containers perform a higher pro-
portion of random writes when compared to sequential
writes. We also observe that increasing the number of
simultaneously operating containers increases proportion
of random writes for both these applications (i.e., Cas-
sandra and MySQL). This can be attributed to increased
fragmentation during data placement.

(a) (b)

Fig. 9. Heterogeneous: Simultaneous Cassandra (Cas-
sandra W workload) and FIO (4KB random write). (a)
Cassandra throughput, (b) FIO throughput

To validate unfair throughput throttle due to the nature
of application, we conduct following three experiments.

8

First, we run simultaneous instances of Cassandra W
with FIO random writes. We expect to see similar unfair
throttle of throughput with containers of FIO random
writers sacrificing higher than Cassandra, when com-
pared to their respective standalone homogeneous oper-
ation. As expected, Figure 9 shows the unfair throughput
throttle. The best throughput for standalone homoge-
neous FIO random write containers is 250k IOPS, but the
maximum throughput we observe in Figure 9 (b) is 134k
IOPS. This verifies the initial hypothesis that if containers
of an application having a higher proportion of sequential
writes is operated simultaneously with containers of
another application performing random writes, then the
throughput of the application performing random writes
is sacrificed terribly with respect to their standalone
homogeneous operation throughput.

(a) (b)

Fig. 10. Heterogeneous: Simultaneous Cassandra (Cas-
sandra W workload) and FIO (128KB sequential write).
(a) Cassandra throughput, (b) FIO throughput

Second, we present the results of operating Cassandra
containers simultaneously with FIO sequential write con-
tainers in Figure 10. We see almost fair throughput throt-
tle under these two applications because containers of
both these applications are performing sequential writes.
Figure 10, shows the result of simultaneously operating
Cassandra with FIO sequential writes. The best through-
put with standalone homogeneous FIO sequential write
instances is 6500 IOPS. From Figure 10, we observe that
the throughput of each application individually degrades
only by 10% to 15%. Thus as expected, we observe fair
throughput throttle.

(a) (b)

Fig. 11. Heterogeneous: Simultaneous Cassandra (Cas-
sandra W workload) and FIO (4KB random read work-
load). (a) Cassandra throughput, (b) FIO throughput

Third, in order to investigate the behavior of simultane-
ously operating write intensive and read intensive appli-

cation containers, we show the results of Cassandra W
containers operating simultaneously with FIO random
read containers in Figure 11. The best throughput with
standalone homogeneous FIO random read instances is
450k IOPS. From Figure 11, we observe that the through-
put of both applications individually degrades only by
10% to 15%. So, combining containers of write-intensive
and read-intensive applications can achieve much better
resource utilization and fair throughput distribution.

Thus, we summarize that the heterogeneous mix of con-
tainers of different applications leads to better utilization
of overall resources like CPU and disk. However, it is not
advisable to mix containers of applications that perform
sequential writes (or reads) and random writes (or reads),
because the throughput distribution as observed is unfair.

5 IMPLICATIONS

In this section we provide the high level design guide-
lines for homogeneous and heterogeneous containerized
docker platform. These are guidelines on how to choose
which type of applications to run simultaneously. For ho-
mogeneous case, we particularly analyze the behavior of
write-intensive and read-intensive homogeneous group-
ing of containers. We propose the following guidelines
to decide optimal number of simultaneously operating
homogeneous containers.

• If application is write intensive then increasing
number of homogeneous containers till CPU gets
saturated, increases throughput.

• If application is read intensive and the working
set size of all the application containers is small
such that majority of its operations can be per-
formed from page cache, then it is advisable to limit
number of containers before falling into throughput
valley.

Heterogeneous mix of workloads has exaggerated im-
pact while using Docker when compared to that of
VM, due to higher possibility of resource contention in
shared resources management performed by Docker. For
heterogeneous case, we conclude that an effective hetero-
geneous mix of containers of different applications leads
to better resource utilization and application throughput.
Regarding the choice of good heterogeneous mix, we
propose the following guidelines.

• It is not advisable to mix containers of applica-
tions that perform sequential writes (or reads) and
random writes (or reads), because the throughput
distribution across containers as observed is unfair.
In such a mix the throughput of an application
performing random writes (or reads) may degrade
drastically.

• Co-scheduling containers that execute applications
with similar characteristics (e.g., both have majority
of sequential writes) leads to the fair throughput
throttle between application containers compared
to their respective standalone homogeneous oper-
ation throughput.

• Combining the containers of write intensive and

9

read intensive applications can achieve much bet-
ter resource utilization and attain fair throughput
degradation. In this case, despite of doubling the
number of simultaneous containers, the cumula-
tive throughput of each application only degrades
around 10% when compared to the standalone im-
plementation of respective applications.

6 CONTAINER CONTROLLER

Docker containers are lightweight without guest OS,
they can be launched when needed. This gives us a good
opportunity to dynamically schedule and launch Docker
containers at runtime. As shown in the guidelines above,
simultaneously operating more containers increases sys-
tem utilization. But, it is not a good idea to run all
containers of different applications simultaneously as it
cannot guarantee the minimum make-span (i.e., the over-
all execution length of all these applications). Launching
all workload containers at the same time may increase
transaction failures due to resource contention, and thus
incur extra time to re-perform those failed transactions.
Unfair throughput throttle among containers of different
applications might also happen as observed in Section 4.
Therefore, in this section we present a new container
controller to determine which containers should be op-
erated simultaneously in the same batch under the goal
of fully utilizing resources and avoiding severe resource
contention. In our design of controller, we assume that
the user is aware of all the workload containers which
are desired to be scheduled prior to scheduling.

6.1 Architecture

Workloads Controller

Workload Character Bins
W1

W2

W3

Workload	
Characteristic	

Detector
Grouping	
Guidelines

Batches of simultaneously
running containers

Device-1
B1B2B3

Fig. 12. Controller Architecture

To evaluate the feasibility of our controller, we imple-
mented it as a loadable module in the Linux kernel.
Our controller module is plugged on top of the Docker
engine to control the Docker container handling func-
tionalities like Docker start, Docker wait, Docker run,
Docker exec, Docker pause, etc. As shown in Figure 12,
the schematic diagram illustrates the peripheral architec-
ture of the components of our controller. Each application
workload, is first fed into the Workload Characteristic De-
tector (WCD) which is responsible to label each workload
based on their characteristics. To obtain the characteristics
of a particular workload, WCD needs to sample this
workload by running it for a short period of time (e.g.,
5 minutes) on the local host and collect the I/O block
trace at the block layer using some trace collection tool
(e.g.,blktrace). The collected I/O block trace is then parsed
by using the parser tool (like blkparse) for analyzing the
workload characteristics. WCD then places this workload

into a workload character bin that contains workloads
with same characteristics, see Figure 12.The total number
of workload character bins depends on the types of work-
loads. By leveraging the grouping guidelines that were
derived in Section 5, the controller analyzes the penalty
of grouping different workloads and then packetizes
workloads into optimal batches/bins for each available
device. Finally, these independent workload batches are
scheduled to run one by one at the application layer.

We give an example of how penalty values are deter-
mined by the controller. From design implications, we
know that combining read intensive and write intensive
workloads is beneficial. Thus, the resultant penalty is set
to null. On the other hand, our guidelines show that it
is not a good idea to group workloads with a higher
fraction of random writes and sequential writes. Thus,
positive penalty will be set up for this combination.

The objective of the controller is to packetize workloads
from workload character bins into different batches, such
that the operation penalty and the number of batches
can both be minimized. Here, each batch should contain
a group of containerized workloads that will be run at
the same time. Furthermore, if more than one logical
volume of storage drives are available, then the controller
should consider multiple sets of batches for these logical
volumes, see Figure 1.

6.2 Problem Formulation

A 1 A 2 A 3 . . . A j . . . A (n*m)

A 1 0 1 2 S 1j 3

A 2 1 0 4 S 2j 1

A 3 2 4 0 S 3j 5

: . . . : . . .

A i S i1 S i2 S i3 S ij S i (n*m)

: :

A (n*m) 3 1 5 S (n*m) j 0

Fig. 13. Conflict Penalty Matrix (S)

Now, we present a mathematical formulation of this
optimization problem. Suppose there are n applications
and m containers of each application. Thus, there are a
total of n∗m containers. Each of these containers can only
belong to one of the workload character bins. Without
loss of generality, we assume that n and m are both
positive integers. Running workloads Ai and Aj each
from different character bins simultaneously may have
some penalty depending upon their characteristics. We
use Sij to denote the conflict penalty between Ai and
Aj , if they are run simultaneously in the same running
batch.

Essentially, we build a penalty matrix which consists of
different relative penalty weights (i.e., Sij) to differentiate
performance interference in the order of severity when
running two containers simultaneously. In more detail,
we configured the relative weights of our penalty matrix
based on the experimental implications that we derived
in Section 5 and used different values of Sij (e.g., 0, 1, 2)
to indicate the relative penalty when running container
i and container j at the same time. For example, the
penalty weight to run a read intensive workload with

10

another write intensive workload may be set to 0 because
no performance interference occurs and this implies a
good decision for better resource utilization. In contrast,
the penalty to run a sequential write workload (like
100% write Cassandra workload) and a random write
workload (like 100% write MySQL workload) can be
relatively high (e.g., with the weight value of 2) because
we can observe performance degradation for that random
write workload is dramatically significant. Thus, we can
build a matrix (see an example in Figure 13) to list
possible conflict penalties of all given containers. The size
of the penalty matrix (S) is n ∗m x n ∗m.

Each of the given containers only runs once, thus each
belongs to one and only one running batch. A naive
case is to run a single container in each running batch
such that we have maximum number of running batches
which is equal to the total number of containers (i.e.,
n ∗ m). Clearly in this case, the system resources might
not be fully utilized and the execution time of these
applications cannot be reduced. Another naive case is to
run all the containers in the same batch. In this case all the
applications will be competing for available resources,
which might lead to contention and throttling. Therefore,
controlling the concurrency of application containers is
important. Our controller has mainly two objectives, i.e.
both the number of batches and the conflict penalties (e.g.
unfair throughput throttle) should be minimized. Eq. 1
gives the total conflict penalty (Tp) and Eq. 2 shows the
total number of batches (Nz), where Sij is penalty cost
between items Ai and Aj when grouping them in same
batch, Pik is a binary variable which equals 1 if item Ai is
packed in batch k, otherwise 0, and zk is a binary variable
which equals 1 if batch k is used, otherwise 0.

Tp =

n∗m∑
k=1

n∗m∑
j=1

n∗m∑
i=j

SijPikPjk (1)

Nz =

m∑
k=1

zk (2)

We transform this problem into an objective function
derived to minimize both Tp and Nz . The goal of our con-
tainer controller is to minimize the interference penalty
cost (Tp) and the makespan (Nz), i.e., the overall execu-
tion time of all I/O workloads. We defined these two per-
formance metrics in Eq.s 1 and 2 and aimed to minimize
them (i.e., Tp and Nz) in an objective function. However,
as we know, the unit and value ranges of Tp and Nz are
different. To solve the problem, we further used the MIN-
MAX normalization method to scale the values of Tp and
Nz both in the [0, 1] range and considered the same
weight for both metrics by summing two normalized
items, see Eq. 3. We remark that different weights can
also be adopted in the objective function. Since our goal
is to minimize Tp and Nz , we built the objective function
as the maximization of the function framed by addition
of these two normalized items. The variables that are
used to describe the mathematical formulation of our
optimization problem are mentioned in Table 3.

TABLE 3: Objective Function Variables (Para.- Parame-
ters)

Para. Description
n Number of applications
m Number of containers of each application
Aj Application container j
zk A binary variable which equals 1 if batch

k is used, otherwise 0
Pjk A binary variable which equals 1 if item

Aj is packed in batch k, otherwise 0
Sij Penalty cost between items Ai and Aj

when grouping them in same time batch
ϕ Maximum number of application

containers that are allowed to run in
same batch

Maxp Maximum possible penalty for a given
S by running all workloads in a
single batch

Minp Minimum possible penalty for a given
S by running only one workload
in each batch (Minp = 0)

Maxz Maximum possible number of batches
(Minz = n*m)

Minz Minimum possible number of batches
(Minz = 1)

The constraints for solving the objective function are
listed in Eqs. 4 to 6. Constraint C1 indicates if workload
Ai runs in batch k. Constraint C2 ensures that each
workload can be run in one and only one batch. Lastly,
depending on the platform specification, a user might
want to limit the maximum number of simultaneous
containers, which is then enforced by constraint C3. Thus,
the goal of the controller is to determine the best matrix
P such that we can obtain the maximum value of the
optimization function f . P then gives the scheduling
information, i.e., workload Ai can be run in batch k
if Pik = 1 and vice-verse. For example, as shown in
Figure 14, item P31 is 1, representing that application
container A3 is run in the first time batch.

Objective:
Find the best P such that,

f = Max

{[
Maxp − Tp

Maxp −Minp

]
+

[
Maxz −Nz

Maxz −Minz

]}
(3)

Constraints:

C1 : Pik ∈ {0, 1} ∀ workload Ai and batch k (4)

C2 :

n∗m∑
k=1

Pik = 1 ∀ workload Ai (5)

C3 :

n∗m∑
i=1

Pik ≤ ϕ ∀ batch k (6)

11

Z 1 Z 2 Z 3 . . . Z k . . . Z (n*m)

A 1 0 1 0 P 1k 0

A i2 P i1 P i2 P i3 P ik P i (n*m)

A 3 1 0 0 P 3k 0

: . . . : . . .

A j P j1 P j2 P j3 P jk P j (n*m)

: :

A (n*m) 1 0 P (n*m) k 0

Application C
ontainers

t
Batch of Simultaneously Running Containers

k

i

j

Fig. 14. Bin packing matrix (P): batches of simultaneously
running containers

6.3 Techniques for Solving Optimization Problem of
Controller

The simplest approach towards solving this convex
optimization problem is brute force evaluation of the
objective function by generating all possible P . This
method definitely gives us the best possible batches of
workloads, which ensures the minimum penalty and
minimum number of batches. But, due to the high com-
plexity of the problem, such a brute force approach is
intractable for solving large-scale instances that often
arise in practice. Moreover, it is high time consuming.
So, we solve our optimization function using two linear
programming algorithms by implementing constrained
matrix optimization in Matlab. We use Interior Point (IP)
and Standard Quadratic Programming (SQP) algorithms
provided by Matlab. All other optimization algorithms
provided by Matlab (version R2017a - academic use)
are not applicable to solve our optimization problem.
Using each of the above algorithms, we further adapt
two possible options of local and global search which
results in local1 and global maxima2. In our solution, we
consider maximum number of supported simultaneous
number of application containers (ϕ) as n ∗m.

6.4 Results

Next, we present the results of the controller, which uses
the optimization objective function to schedule workload
containers. Here, we compare the performance results
as well as the overhead of using different optimization
algorithms. Our platform has a single logical volume
striped over three SSDs to provide 3TB storage space.
We refer the readers to Section 3.2 for detailed platform
configurations. As shown in Table 4, we use 5 different
applications as representative of diverse I/O behaviors
and then configure 5 workloads with different parameter
settings (e.g. number of updates, number of threads)
for each application. More detailed information of two
database applications (i.e., MySQL and Cassandra) can
also be found in Table 2. For each workload, we have
the fixed record size (e.g., 1KB) but change the number of

1. A real-valued function f defined on a domain X , is said to have
a local (or relative) maximum point at the point x* if there exists some
ε > 0 such that f(x*) ≥ f(x) for all x in X within distance ε of x*.

2. f has a global (or absolute) maximum point at x* if f(x*) ≥ f(x)
for all x in X .

0

0.5

1

1.5

2

BF IP-G SQP-G IP-L SQP-L

O
b
je

ct
iv

e
Fu

nc
ti
o
n
(f
)

Fig. 15. Objective function evaluation with different opti-
mization algorithms. (BF - Brute Force, IP-G - Interior Point
using Global search, SQP-G - Standard Quadratic Pro-
gramming using Global search, IP-L - Interior Point using
Local search, SQP-L - Standard Quadratic Programming
using Local search)

records. As a result, we can have different record sizes for
each workload (even from the same application) ranging
from 50GB to 100GB.

Thus, we have 5 containers for running each appli-
cation and totally 25 containers in this experiment to
evaluate our controller. The goal of our controller is to
determine optimal running batches of these 25 containers.
Actually, we did consider to use more containers in our
experiment. But, our experimental results in Sec. 4 show
that the resources (e.g., disk or CPU) have already been
saturated when we have 8 ∼ 16 simultaneously running
containers in the system, see Figs. 2, 4 and 5. Performance
improvement can be obtained by the controller until all
the resources are utilized to their maximum. After satura-
tion, further increasing the number of containers does not
give better performance. Given that, we consider to use
up to 25 different containers (or I/O intensive database
workloads) in this experiment. Another reason to limit
our experiment with 25 container is due to the high
overhead for data loading and warming up for the related
workload database. Specifically, the average database size
of each workload in a container is approximately 50GB
∼ 100GB. It took us about 1 week to setup the databases
for total 25 containers.

TABLE 4: Controller Workload

Application Number of Containers
MySQL 5

Cassandra W 5
FIO Random Read 4KB 5
FIO Random Write 4KB 5

FIO Sequential Write 128KB 5

Figure 15 shows the results of the objective function (i.e.,
Eq. 3) in terms of maximum, minimum and one standard
deviation from the mean under different optimization
techniques. As the goal of our objective function is to
maximize the values, the higher values are better. The
objective function value on the y axis of Figure 15 is

12

the result of evaluating the optimization function men-
tioned in equation 3 considering the constraints given
in equations 4 to 6. The x axis of Figure 15 shows the
results using different methods of optimization discussed
in Section 6.3. We can see that the Brute Force 3 (BF)
method obtains both the best maxima and the least
maxima because it tries all possible P matrices. Where
each P matrix would represent a possible combination
of the workload batches. Both, the interior point (IP) and
the standard quadratic programming (SQP) approaches
use approximated derivative solver. Thus, the result is
slightly different for each run, even for the same input
parameters. Therefore, for the remaining four methods,
we get their results each over 50 independent runs and
over 50 iterations in each run.

We further notice that although the brute force method
gives us the best maxima for our objective function, the
operation of BF is very time consuming as the brute
force algorithm evaluates all possible combinations. The
complexity of this brute force method is O((nm)!) that is
only fine when the values of both n and m are small.

0

1

2

3

4

IP-G SQP-G IP-L SQP-L

No
rm

al
ize

d	
O
pt
im

iza
tio

n	
O
ve
rh
ea
d	
(%
)

Fig. 16. Normalized total controller overhead with baseline
as time required by brute force optimization

311
348

380

540 548

0

10

20

30

40

50

60

BF IP-G SQP-G IP-L SQP-L

Ex
ec
ut
io
n	
Sp
ee
d-
up
	(%

)

Fig. 17. Speed-up in execution of containers by using
controller with baseline as a case without controller, where
all application containers are launched at once

We observe that both global search methods, i.e., IP-G
and SQP-G, also achieve a good maxima of our objective
function. The maximum values by these algorithms are
very close to the maximum one from the brute force

3. The detailed algorithm we developed to process the brute force
method by hashing can be found in the appendix.

517

356
388

544 552

0

10

20

30

40

50

BF IP-G SQP-G IP-L SQP-L

O
ve
ra
ll	
Sp
ee
d-
up
	(%

)

Fig. 18. Overall Speed-up including optimization by us-
ing controller, with baseline as a case without controller,
where all application containers are launched at once

evaluation, see Figure 15. More importantly, these global
evaluation techniques consume much less time than the
brute force method. Each optimization method consumes
some time to solve the problem known as overhead of
that method. As the brute force method evaluates all
possible test cases, so it has the maximum possible over-
head. Figure 16, shows the normalized overhead of four
optimization algorithms compared with the brute force
one. We can see that two global search algorithms use
less than 4% of time used by the brute force method. The
two local search algorithms consume even less overhead.
However, they cannot provide the maxima as well as
the global search approaches, see IP-L and SQP-L in
Figures 15 and 16. Note that the controller overhead
shown in Figure 16 includes the overhead by all the
components of the controller shown in Figure 12, like
labelling time by WCD, time consumed to optimize
objective function, and management delays.

To further investigate the effectiveness on actual per-
formance, we conduct real experiments by running the
25 containers of 5 different applications as shown in
Table 4 under different container batches results obtained
by those five optimization algorithms. Figure 17 shows
the speed-up in execution time of all the containers by
using results from the controller w.r.t. baseline where all
application containers are launched at once without any
controller. In our evaluation, the execution time under the
baseline case is about 600 hours. We also gave the actual
execution time (hours) under each controller on top of the
corresponding bar in Figure 17. With a proper scheduling
of containers, the overall execution of all workloads could
be faster than when compared to the case of launching
all application containers at once without any scheduling
efforts. We observe that BF gives the best quality of
optimized batches, showing the highest execution speed-
up. The global search methods (i.e., IP-G and SQP-G)
achieve very comparable speed-up results to BF. The local
searches using IP-L and SQP-L give only 10% of speed-up
in execution of workloads.

Finally, we evaluate the overall effectiveness by con-
sidering both execution speed-up and time overhead
as operations required by controller may also consume
some additional time. Figure 18 shows the speed-up in
overall runtime (i.e., application execution time plus the

13

time consumed by controller to solve objective function)
under five optimization algorithms. The baseline is still
the case without the controller. Again, the values on top
of each bar indicate the actual overall runtime in hours
for each algorithm. Obviously, the BF approach loses its
superiority due to its high overhead. In contrast, the two
global search approaches become the best with 35 ∼ 40%
speed-up in overall.

7 CONCLUSION

In this paper, we investigated the performance effect of
increasing number of simultaneously operating docker
containers that are supported by docker data volume on
a stripped logical volume of multiple SSDs. We analyzed
the throughput of applications in homogeneous and
heterogeneous environments. We excavated the reason
behind our interesting observations and further verified
them by using the FIO benchmark workloads. To best
of our knowledge, this is the first research work to
explore important phenomenon like throughput valley
in a containerized docker environment. Furthermore, our
work showed that it is not advisable to simultaneously
run the containers of applications that perform sequential
writes (or reads) and random writes (or reads). We
presented some design guidelines that are implicated
from performance engineering carried out in this paper
and then developed a workload controller to effectively
schedule the launching time of all application containers.
We showed that our controller can decide the batches
of docker containers that can run simultaneously such
that the overall execution time can be reduced and work-
load interference (like unfair throughput throttle) can be
avoided. In the future, we plan to embed our docker
controller with open source docker engine installation
such that user can easily use it just by selecting an auto-
scheduling option.

8 ACKNOWLEDGEMENTS

This work was partially completed during Janki Bhi-
mani’s internship at Samsung Semiconductor Inc., and
was partially supported by National Science Foundation
Career Award CNS-1452751 and AFOSR grant FA9550-
14-1-0160.

REFERENCES

[1] Wikipedia, “Docker (software) — wikipedia - the
free encyclopedia,” 2016, [Online; accessed 12-July-2016].
[Online]. Available: {https://en.wikipedia.org/w/index.php?
title=Docker (software)&oldid=728586136}

[2] C. Anderson, “Docker.” IEEE Software, vol. 32, no. 3, 2015.
[3] P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer,

and C. Notredame, “The impact of docker containers on the
performance of genomic pipelines,” PeerJ, vol. 3, p. e1273, 2015.

[4] J. Fink, “Docker: a software as a service, operating system-level
virtualization framework,” Code4Lib Journal, vol. 25, 2014.

[5] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux contain-
ers,” in Performance Analysis of Systems and Software (ISPASS), 2015
IEEE International Symposium On. IEEE, 2015, pp. 171–172.

[6] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs container-
ization to support paas,” in Cloud Engineering (IC2E), 2014 IEEE
International Conference on. IEEE, 2014, pp. 610–614.

[7] A. Olbert, D. O’Neill, C. Neufeld et al., “Managing multiple
virtual machines,” 2003, uS Patent App. 10/413,440.

[8] M. Ronstrom and L. Thalmann, “MySQL cluster architecture
overview,” MySQL Technical White Paper, 2004.

[9] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim,
“Performance comparison analysis of linux container and virtual
machine for building cloud,” Advanced Science and Technology
Letters, vol. 66, pp. 105–111, 2014.

[10] “control groups (cgroups),” accessed in 1/20/2018.

[11] Q. Xu, M. Awasthi, K. Malladi, J. Bhimani, J. Yang, and M. An-
navaram, “Performance Analysis of Containerized Applications
on Local and Remote Storage,” in International Conference on
Massive Storage Systems and Technology (MSST), 2017.

[12] ——, “Docker Characterization on High Performance SSDs,” in
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 2017.

[13] J. Bhimani, Z. Yang, M. Leeser, and N. Mi, “Accelerating Big
Data Applications Using Lightweight Virtualization Framework
on Enterprise Cloud,” in 21st IEEE High Performance Extreme
Computing Conference (HPEC 2017), 2017.

[14] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and
C. A. Lang, “SSD bufferpool extensions for database systems,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 1435–1446,
2010.

[15] L.-P. Chang, “Hybrid solid-state disks: combining heterogeneous
NAND flash in large SSDs,” in 2008 Asia and South Pacific Design
Automation Conference. IEEE, 2008, pp. 428–433.

[16] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wob-
ber, “Extending SSD lifetimes with disk-based write caches.” in
FAST, vol. 10, 2010, pp. 101–114.

[17] H. Jo, Y. Kwon, H. Kim, E. Seo, J. Lee, and S. Maeng, “SSD-HDD-
hybrid virtual disk in consolidated environments,” in European
Conference on Parallel Processing. Springer, 2009, pp. 375–384.

[18] T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang, “hStorage-
DB: heterogeneity-aware data management to exploit the full
capability of hybrid storage systems,” Proceedings of the VLDB
Endowment, vol. 5, no. 10, pp. 1076–1087, 2012.

[19] R. Chin and G. Wu, “Non-volatile memory data storage system
with reliability management,” May 25 2009, uS Patent App.
12/471,430.

[20] B. aDam LeVenthaL, “Flash storage memory,” Communications of
the ACM, vol. 51, no. 7, pp. 47–51, 2008.

[21] Y. Wang, K. Goda, M. Nakano, and M. Kitsuregawa, “Early
experience and evaluation of file systems on SSD with database
applications,” in Networking, Architecture and Storage (NAS), 2010
IEEE Fifth International Conference on. IEEE, 2010, pp. 467–476.

[22] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Row-
stron, “Migrating server storage to SSDs: analysis of tradeoffs,” in
Proceedings of the 4th ACM European conference on Computer systems.
ACM, 2009, pp. 145–158.

[23] D. Schall, V. Hudlet, and T. Härder, “Enhancing energy efficiency
of database applications using SSDs,” in Proceedings of the Third
C* Conference on Computer Science and Software Engineering. ACM,
2010, pp. 1–9.

[24] S. Park and K. Shen, “A performance evaluation of scientific
I/O workloads on flash-based SSDs,” in 2009 IEEE International
Conference on Cluster Computing and Workshops. IEEE, 2009, pp.
1–5.

[25] S. Boboila and P. Desnoyers, “Performance models of flash-
based solid-state drives for real workloads,” in 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies (MSST). IEEE,
2011, pp. 1–6.

[26] H. Fujii, K. Miyaji, K. Johguchi, K. Higuchi, C. Sun, and
K. Takeuchi, “x11 performance increase, x6. 9 endurance en-
hancement, 93% energy reduction of 3D TSV-integrated hybrid
ReRAM/MLC NAND SSDs by data fragmentation suppression,”
in 2012 symposium on VLSI circuits (VLSIC). IEEE, 2012, pp. 134–
135.

14

[27] T. Y. Kim, D. H. Kang, D. Lee, and Y. I. Eom, “Improving
performance by bridging the semantic gap between multi-queue
SSD and I/O virtualization framework,” in 2015 31st Symposium
on Mass Storage Systems and Technologies (MSST). IEEE, 2015, pp.
1–11.

[28] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of
the 4th annual Symposium on Cloud Computing. ACM, 2013, p. 5.

[29] A. Takefusa, H. Nakada, T. Ikegami, and Y. Tanaka, “A highly
available distributed self-scheduler for exascale computing,” in
Proceedings of the 9th International Conference on Ubiquitous Infor-
mation Management and Communication. ACM, 2015, p. 56.

[30] “Docker Swarm,” accessed in 1/20/2018.
[31] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,

R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center.” in NSDI, vol. 11, no.
2011, 2011, pp. 22–22.

[32] K. Li, H. Liu, Y. Wu, and X. Xu, “A two-dimensional bin-packing
problem with conflict penalties,” International Journal of Production
Research, vol. 52, no. 24, pp. 7223–7238, 2014.

[33] N. Karmarkar and R. M. Karp, “An efficient approximation
scheme for the one-dimensional bin-packing problem,” in Foun-
dations of Computer Science, 1982. SFCS’08. 23rd Annual Symposium
on. IEEE, 1982, pp. 312–320.

[34] A. Scholl, R. Klein, and C. Jürgens, “BISON: A fast hybrid
procedure for exactly solving the one-dimensional bin packing
problem,” Computers & Operations Research, vol. 24, no. 7, pp. 627–
645, 1997.

[35] R. Sridhar, M. Chandrasekaran, C. Sriramya, and T. Page, “Op-
timization of heterogeneous Bin packing using adaptive genetic
algorithm,” in IOP Conference Series: Materials Science and Engi-
neering, vol. 183, no. 1. IOP Publishing, 2017, p. 012026.

[36] B. Schulze, L. Paquete, K. Klamroth, and J. R. Figueira, “Bi-
dimensional knapsack problems with one soft constraint,” Com-
puters & Operations Research, vol. 78, pp. 15–26, 2017.

[37] T. K. Ghosh, S. Das, S. Barman, and R. Goswami, “A Comparison
Between Genetic Algorithm and Cuckoo Search Algorithm to
Minimize the Makespan for Grid Job Scheduling,” in Advances
in Computational Intelligence: Proceedings of International Conference
on Computational Intelligence 2015. Springer, 2017, pp. 141–147.

[38] M. Paul, R. Sridharan, and T. R. Ramanan, “A multi-objective
decision-making framework using preference selection index for
assembly job shop scheduling problem,” International Journal of
Management Concepts and Philosophy, vol. 9, no. 4, pp. 362–387,
2016.

[39] H. Afsar, P. Lacomme, L. Ren, C. Prodhon, and D. Vigo, “Reso-
lution of a Job-Shop problem with transportation constraints: a
master/slave approach,” IFAC-PapersOnLine, vol. 49, no. 12, pp.
898–903, 2016.

[40] M. Hasenstein, “The logical volume manager (LVM),” White paper,
2001.

[41] G. Banga, I. Pratt, S. Crosby, V. Kapoor, K. Bondalapati, and
V. Dmitriev, “Approaches for efficient physical to virtual disk
conversion,” 2013, uS Patent App. 13/302,123.

[42] “How to fix MySQL high memory usage?” accessed in
10/04/2017.

[43] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measure-
ments in the cloud: observing, analyzing, and reducing variance,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 460–471,
2010.

[44] “How MySQL Uses Memory,” accessed in 10/04/2017.
[45] D. McCreary and A. Kelly, “Making sense of NoSQL,” Shelter

Island: Manning, pp. 19–20, 2014.
[46] A. MySQL, “MySQL database server,” Internet WWW page, at

URL: http://www. mysql. com, 2004.
[47] A. Lakshman and P. Malik, “Cassandra: a decentralized struc-

tured storage system,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 2, pp. 35–40, 2010.

[48] Francois, W. Raab, A. Kohler, and Shah, MySQL TPC-C
benchmark, (accessed Septenber 6, 2016). [Online]. Available:
http://www.tpc.org/tpcc/detail.asp

[49] Cassandra-stress benchmark, (accessed Septenber 6, 2016).
[Online]. Available: https://docs.datastax.com/en/cassandra/
2.1/cassandra/tools/toolsCStress t.html

[50] FIO - flexible I/O benchmark, (accessed Septenber 7, 2016). [Online].
Available: http://linux.die.net/man/1/fio

[51] L. R. Mote Jr, “Memory controller which executes read and write
commands out of order,” Jun. 10 1997, uS Patent 5,638,534.

[52] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in ACM SIGARCH Computer Archi-
tecture News, vol. 28, no. 2. ACM, 2000, pp. 128–138.

[53] R. J. Bowater, S. P. Larky, J. C. S. Clair, and P. G. Sidoli, “Flexible
dynamic memory controller,” Apr. 5 1994, uS Patent 5,301,278.

Janki Bhimani Janki Bhimani is a Ph.D. candidate working with Prof.
Ningfang Mi at Northeastern University, Boston. Her current research
focuses on performance enhancement of parallel computing heteroge-
neous platforms, containerized cloud and multi-stream flash storage. She
received her M.S. (in 2014) from Northeastern University in Computer
Engineering. She received her B.Tech. (in 2013) from Gitam University,
India in Electrical and Electronics Engineering.
Zhengyu Yang Zhengyu Yang is a Ph.D. candidate at Northeastern
University, under the supervision of Prof. Ningfang Mi. He graduated
from the Hong Kong University of Science and Technology with a M.Sc.
degree in Telecommunications, and he obtained his B.Sc. degree in
Communication Engineering from Tongji University, Shanghai, China. His
research interests are cache algorithm, deduplication, cloud computing,
datacenter storage and scheduler, and Spark optimization.
Ningfang Mi Ningfang Mi is an Associate Professor at Northeastern
University, Boston. She received her Ph.D. degree in Computer Science
from the College of William and Mary, VA. She received her M.S. in
Computer Science from the University of Texas at Dallas, TX and her
B.S. in Computer Science from Nanjing University, China. Her current
research interests are capacity planning, MapReduce/Hadoop schedul-
ing, cloud computing, resource management, performance evaluation,
workload characterization, simulation and virtualization.
Jingpei Yang Jingpei Yang is a staff engineer at Samsung Memory
Solutions Lab focusing on optimizing data center solutions for the cutting
edge storage features and developing forward looking platforms for
enterprise flash products. She received her Ph.D. degree in Computer
Science from University of California, Santa Cruz. Prior to Samsung,
she worked at Fusion-IO building efficient systems for emerging Storage
Class Memories technologies.
Qiumin Xu Qiumin Xu is currently a PhD candidate in Ming Hsieh
department of Electrical Engineering at the University of Southern Cal-
ifornia. She received her bachelors degrees in Microelectronics and
Statistics from Peking University in 2011 and masters degrees in Elec-
trical Engineering and Computer Science at the University of Southern
California. Her research interests includes computer architecture and
storage systems.
Manu Awasthi Manu Awasthi is an Assistant Professor at Indian Institute
of Technology Gandhinagar. He received his PhD in Computer Science
from University of Utah and a Bachelor of Technology from Indian
Institute of Technology, Varanasi, India. His research interests include
computer architecture with a focus on memory and storage systems.
Rajinikanth Pandurangan Rajinikanth Pandurangan is a senior staff
engineer at Samsung Memory Solutions Lab R&D. He is focusing on en-
abling next generation features for Samsungs enterprise and consumer
class flash SSD products. Prior to Samsung he worked at PMC-Sierra
and Adaptec Inc., designing and building storage virtualization and RAID
products. Raj had received Master degree from Annamalai University
India.
Vijay Balakrishnan Vijay Balakrishnan is the Director of Datacenter
Performance and Ecosystem Team at Samsung Memory Solutions Lab.
building efficient and high-performance solutions for the datacenter.
He works on solutions that leverage Samsungs industry leading flash,
SSD and DRAM technologies. Prior to Samsung he worked at Sun
Microsystems and Microsoft designing and building high-performance
systems Vijay has a M.S from University of Cincinnati and Bachelor of
Engineering from Birla Institute of Technology, Mesra India.

