
Accelerating Big Data Applications Using Lightweight
Virtualization Framework on Enterprise Cloud

Janki Bhimani, Zhengyu Yang, Miriam Leeser, and Ningfang Mi
Dept. of Electrical & Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115

bhimani@ece.neu.edu, yangzy1988@coe.neu.edu, mel@coe.neu.edu, and ningfang@ece.neu.edu

Abstract—Hypervisor-based virtualization technology has
been successfully used to deploy high-performance and scal-
able infrastructure for Hadoop, and now Spark applications.
Container-based virtualization techniques are becoming an im-
portant option, which is increasingly used due to their lightweight
operation and better scaling when compared to Virtual Machines
(VM). With containerization techniques such as Docker becoming
mature and promising better performance, we can use Docker
to speed-up big data applications. However, as applications have
different behaviors and resource requirements, before replacing
traditional hypervisor-based virtual machines with Docker, it is
important to analyze and compare performance of applications
running in the cloud with VMs and Docker containers. VM
provides distributed resource management for different virtual
machines running with their own allocated resources, while
Docker relies on shared pool of resources among all containers.
Here, we investigate the performance of different Apache Spark
applications using both Virtual Machines (VM) and Docker
containers. While others have looked at Docker’s performance,
this is the first study that compares these different virtualization
frameworks for a big data enterprise cloud environment using
Apache Spark. In addition to makespan and execution time, we
also analyze different resource utilization (CPU, disk, memory,
etc.) by Spark applications. Our results show that Spark using
Docker can obtain speed-up of over 10 times when compared
to using VM. However, we observe that this may not apply to
all applications due to different workload patterns and different
resource management schemes performed by virtual machines
and containers. Our work can guide application developers,
system administrators and researchers to better design and
deploy big data applications on their platforms to improve the
overall performance.

Keywords—Virtual Machine (VM), Container, Docker, Apache
Spark, Big Data, Cloud Computing, Resource Management, Task
Assignment, Workload Evaluation & Estimation

I. INTRODUCTION

Big data enterprise cloud environments, such as MapRe-
duce [1] and its implementations like Hadoop [2] and
Spark [3], provide a productive high level programming inter-
face for large scale data processing and analytics. MapReduce
is a software framework that allows a cluster of computers to
process a large set of data in parallel. MapReduce consists
of two main steps, “map” and “reduce”, where the “map”
step dispatches pieces of the huge data set to individual
computers in the cluster for processing and “reduce” combines
the intermediate data from “map” and derives the final output.
Hadoop, a widely adopted cloud computing framework in
industry, has been criticized in recent years for its inefficiency
of handling iterative and interactive applications. The biggest
drawback of Hadoop is that it introduces large amounts of
disk I/O operations for storing intermediate data between map

and reduce phases. To overcome this, the new framework,
Spark, strives to cache all intermediate data (Resilient Dis-
tributed Datasets (RDDs)) into memory instead of disk. RDDs
can be stored in memory between queries without requiring
replication and disk access. Each RDD remembers how it was
built from other datasets (by transformations like map, join or
groupBy) to rebuild itself when required. RDDs allow Spark
to outperform Hadoop models by up to 100x in multi-pass
analytics.

The most widely used implementation of Spark is by
setting up a master-worker framework on hypervisor-based
virtualizations (such as Xen, VMware and KVM) using vir-
tual machines (VMs). Recently, the world of virtualization
platforms has seen a dynamic shift with the introduction
and stable release of containerization technologies such as
Docker [4], [5]. Containers and virtual machines have similar
resource isolation and allocation benefits but different archi-
tectural approach and resource management. Containers are
more portable and efficient compared to bare metal and virtual
machines [6], [7].

While characterizing and improving performance for mul-
tiple instances on a bare metal or virtual machine is not
new [8], [9], “Dockerized” big data applications running in
cloud frameworks like Spark deserve special attention. There
are challenges when deploying a distributed application such
as a Spark application on containers, as the operation of Spark
which includes handling in-memory RDDs, shared variables,
etc. is unaware of the underlying virtualization.

Containers and virtual machines are two different technolo-
gies. Each has its own advantages and working patterns. The
Docker containers are lightweight when compared to VMs as
each container does not have to operate separate OS (operating
system) [10]. Containers perform shared resource management
but VMs perform distributed resource management. The dis-
tributed resource management in VM guarantees stability and
security because each virtual machine runs with its specific
assigned set of resources, while shared resource manage-
ment in Docker enables more flexible sharing of resources
which may increase overall resource utilization. It is observed
that containerization techniques like Docker, LxCs etc. have
promising performance for many different applications [11]–
[13]. Thus, it is important to compare performance of widely
used Big Data processing framework Spark on Docker with
that of traditional virtual machines.

The main contributions of this paper are:

• Building and comparing the architecture of Spark
cluster on hypervisor-based virtualization and con-



tainerized virtualization.

• Makespan analysis of Spark applications operating on
multiple virtual machines and Docker containers.

• Resource management and utilization study with re-
spect to behavior of applications on different virtual-
ization frameworks.

In this paper, we study what type of virtualization frame-
works will be best for operating Spark applications depending
upon different resource usages. We observe that although
most of the previous work claims that applications perform
better on Docker when compared to VM, this may not be
generalized for all distributed applications running on the big
data enterprise cloud framework of Apache Spark. To the best
of our knowledge, our paper is the first paper to compare the
performance difference of Spark between VM and Docker.

The rest of this paper is organized as follows. In Sec. II,
we describe the related work. In Sec. III and IV, we explain
the architecture and current implementation of our framework.
Sec. V shows our experimental results and implications. Fi-
nally, we conclude our current work and introduce future work
in Sec. VI.

II. RELATED WORK

With the growing amount of data, the big data process-
ing framework like Apache Spark is widely used. Apache
Spark [14] is a general cluster compute engine for scalable
data processing. One of the widely accepted methods of using
Apache Spark to process enterprise cloud workloads is by
using hypervisor based virtualization framework of Virtual
Machines (VMs). The virtual machine technology has been
developed for several decades, bringing forth several software
solutions (such as Xen, VMware and KVM) and incorporat-
ing support for several data processing frameworks such as
Hadoop, Spark etc. The main benefit of virtualization include
hardware independence, availability, isolation and security.
However, the virtual machines incur some performance over-
head [15], [16].

Recently, new virtualization technology of containerization
(such as Docker [17], OpenVZ [18] and LxC [19]) has been
developed which claims to provide the same independence and
multi-tenancy with negligible performance overhead compared
to VMs. The container-based virtualization implementations
offer a lightweight virtualization layer, which promises a near-
native performance. Literature [5] reveals that the Docker also
performs well for traditional database applications running
with high speed NVMe SSDs as storage. Using database
processing framework such as Hadoop, Spark etc. in container-
ized framework rather than hypervisor based VMs may be
beneficial. VM deduplication, migration techniques are devel-
oped in [20]–[22]. Performance modeling for cloud computing
frameworks is studied in [23]–[26]. Recent work [27]–[37]
further focus on how to utilize Flash-based SSDs in cloud
computing platforms to accelerate their overall performance.
Studies [9], [38]–[40] investigate resource allocation and op-
timization problems.

However, none of the existing work have studied and
compared the operation of Apache Spark using Docker and
VMs. Some studies investigated performance of Hadoop on

Host Backing File System (Ext4, XFS, etc.)

Host OS

VM Hypervisor

Disk Pool (HDD, SSD, NVMe, etc.)

App
Libs

VM

Guest OS

App
Libs

VM

Guest OS

App
Libs

VM

Guest OS

Storage

Application

OS & Driver

Fig. 1. System architecture of virtual machine hypervisor.

Docker Storage Driver
Devicemapper

(Direct-lvm. Loop-lvm)

Host OS

Docker Engine

Aufs, Btrfs, Overlayfs

App

Libs / Bins

Container

App

Libs / Bins

Container

App

Libs / Bins

Container

Storage

Application

OS & Driver

Disk Pool (HDD, SSD, NVMe, etc.)

Host Backing File System (Ext4, XFS, etc.)

Fig. 2. System architecture of Docker container.
virtual machine and Docker, but they did not analyze deeply of
the difference of VM and Docker [41], [42]. Some other work
like DCSpark [13] describes how to run Spark applications on
Docker without conflicting configurations and library depen-
dencies in one physical cluster. When compared to Apache
Hadoop, Spark improves the system performance by storing
as much as possible intermediate results (e.g., RDDs) into
the memory instead of spinning disks (e.g., HDDs). Prior
work [43], shows that Spark is about 5x faster than Hadoop, for
most commonly used applications like Word Count, K-means,
and Pagerank, so in this work we explore the performance
of Spark applications on Docker when compared to virtual
machines.

III. VIRTUALIZATION FRAMEWORKS

In this section, we study the two different virtualization
frameworks, i.e., virtual machine (VM) hypervisor and Docker
container. VM hypervisor, which is also called Virtual Machine
Hypervisor (VMH) and Virtual Machine Monitor (VMM), has
a long history since the 1960s and is widely used even before
the cloud computing era. It is an important technique for
resource-provisioning, multi-tenancy, and system constitution
in IaaS.As shown in Fig. 1, VM Hypervisor (such as Xen,
KVM, VMware, etc.) is the virtual platform software that
implements multiple guest OSes in a single system server.
Specifically, the monitor lies between one or more operating
systems and the hardware and gives the illusion to each running
OS that it controls the machine. A hypervisor is operated
as middleware between the VM and OS. Each VM has its
own guest OS so that applications can directly call APIs (e.g.,
libs) to transparently run on each VM.

In contrast, Docker provides application virtualization us-
ing a containerized environment, see Fig. 2. A Docker image
is an inert, immutable file, from which containers are started.



TABLE I: Difference between VM hypervisor and Docker container.
Specs Virtual Machine Container

Products VMware, Xen, KVM, etc. Dockers, rkt, etc.
Guest OS Included Not included

virtualization Controller VM hypervisor Docker engine
Resource Management Distributed Shared

Machine Emulation Complete (isolated OS kernel) Partial (shared OS kernel)
Spatial Size (Bytes) Large Small

Launch Time Long Short
Migration May require image conversion Easy

Application installation can only be performed inside Docker
containers. In order to maintain lightweight characteristics, it is
advisable to keep the installation stack within the container as
small as possible for better performance. The data management
of containers is superintended by Docker storage drivers [44]
(e.g., OverlayFS, AUFS, Btrfs, etc.). We use the AUFS file
system as Docker storage driver for our Docker containers.
Generally, XFS and Ext4 are most commonly used host
backing file systems. Here, we use Ext4 for host backing
file system of both virtual machine and Docker.

A. Common Components

Both VM and Docker are virtualization approaches and
have three layers: application, OS & driver, and storage. Each
container works in its own separate workspace in terms of
file system and database. The application layer has multiple
instances of different applications and workloads operating in
multiple virtual machines or containers (see application layer
in Figures 1 and 2). Thus, I/Os are generated by the application
layer. The OS and Driver layer are comprised of host OS and
host backing file system such as XFS or Ext4. The lowest
layer of virtual machine hypervisor and Docker container is
comprised of storage media where all data is persisted. The
storage media can consist of hard drives (HDDs), solid state
drives (SSDs) or even hybrid drives consisting of different
types of storage devices.

B. Major Differences

Next, we discuss the major differences between the two
virtualization technologies. Table I summarizes these differ-
ences.

1) Guest OS: The major difference between VM and
Docker is that the latter does not need to maintain a guest
OS inside each container. This makes containers “lighter” and
also lowers the overhead of managing device drivers in each
instance. Containers can thus enable faster start up with better
performance when compared to VMs. Furthermore, containers
share the host’s kernel and thus have less isolation.

2) Virtualization Controller: To manage multiple virtual-
ization instances requires a Virtualization controller to decide
the instantiation, termination and inspect low-level information
like network ports and IP addresses of all instances. The virtual
machine has VM hypervisor as a controller, while Docker
consists of Docker engine. This virtualization controller runs
on the host and needs to have sudo access to all system
resources.

3) Resource Management: The virtual machine hypervisor
has distributed resource management among different virtual
machines, where each VM is assigned the maximum limit of
resources it can use. There also exist many smart techniques to
distribute resources in an optimal way among different virtual
machines [45], [46], but they lack run time flexibility. The
Docker container relies on cgroups to assign, allocate and
manage resources like CPU, Memory, Block I/O, Network,
etc. Unlike VM, containerized virtualization performs shared
resources management among different active and inactive
containers. Resources like memory and page cache are shared
among all containers. No prior resource allocations in terms
of processing unit and memory are done and all the containers
compete for these shared resources at run time. Thus, flex-
ible resource sharing and high compatibility are possible in
containerized virtualization.

The shared resource management in Docker can also ensure
better resource utilization when there exist some inactive
instances. Under hypervisor-based virtualization, the inactive
instances may occupy the resources allocated to them. But,
the inactive instances would consume negligible resources
in containerized virtualization. Thus, containerization allows
active instances to use resources that are unused by inactive
instances. We investigate the impacts of this distributed and
shared resource management in our experiments in Section V.

4) Distribution: VM hypervisor distributes VM images,
each including guest OS and individual library and application
stack. This type of distribution results in better security and
independence but larger overhead of start up and application
performance. Meanwhile, Docker containers are lightweight
without guest OS and are preferred to have one or least
possible number of applications in each container. The Docker
daemon can only run one storage driver, and all containers
created by that daemon instance use the same storage driver.
Storage drivers operate with the copy-on-write technique [47],
which provides advantages for read intensive applications and
further reduces I/O overhead. For applications that generate
heavy write workloads, it is advisable to maintain data persis-
tence. Docker volume is a mechanism to automatically provide
data persistence for containers. The biggest benefit of this
feature is that I/O operations through this path are independent
of the choice of the storage driver, and should be able to
operate at the I/O capabilities of the host.

IV. DATA PROCESSING ENGINE: APACHE SPARK

Apache Spark [14] is a general cluster compute engine for
scalable data processing, which generalizes two-stage MapRe-
duce to support arbitrary directed acyclic graphs (DAGs) of



VM Hypervisor

…

Master

Executor
Executor

Worker 1

…

Libs / Bins
Guest OS

Executor
Executor

Worker 2

…

Libs / Bins
Guest OS

Executor
Executor

Worker N

…

Libs / Bins
Guest OS

ClusterManager

HistoryServer
…

Libs / Bins
Guess OS

Driver

Fig. 3. Framework of Spark on VM.

Docker_Spark_Image

…

Executor
Executor

Worker 1

…

Libs / Bins

Executor
Executor

Worker 2

…

Libs / Bins

Executor
Executor

Worker N

…

Libs / Bins

Docker Engine

Docker Compose:
Spark Master
Spark Worker 1
Spark Worker 2

…
Spark Worker N

YML

Master

ClusterManager

HistoryServer
…

Libs / Bins

Driver

Instantiate

Fig. 4. Framework of Spark on Docker.
tasks and fast data sharing between operations. Most impor-
tantly, Spark improves the system performance by storing
intermediate results (e.g., RDDs) into the memory instead of
spinning disks. We choose Spark to compare its operations on
different virtualization frameworks because there are several
improvements in the development of Spark from Hadoop [2]:
1. Spark provides an easy-to-use memory abstraction imple-
mented as resilient distributed datasets (RDDs) which avoids
a significant portion of slow disk I/Os that occur in Hadoop.
2. Spark supports DAG scheduling. In contrast to the sim-
ple programming model of map phase and reduce phase in
Hadoop, a Spark job usually consists of multiple stages, which
makes resource provisioning in Spark more difficult than that
in Hadoop.
3. Spark supports a wider range of applications (like graphs
processing and machine-learning libraries), enabling usage of
one platform to meet different data analytics needs.

A. Spark Architecture
Spark has one master node and N worker nodes. The

master node can be used to create RDDs, accumulators
and broadcast variables. It contains a set of modules that
work together to schedule and submit tasks from each
application. For example, the driver module consists
of RDDGraph, DAGScheduler, TaskScheduler and
SchedulerBackend. The ClusterManager module cre-
ates RDDs and performs a series of transformations to achieve
its final result. These transformations of RDDs are translated
into a DAG and submitted to the scheduler to be executed on
a set of worker nodes.

There are multiple work nodes in Spark and each of which
is a JVM that run multiple executors. These executors run tasks
scheduled by the driver, store computation results in memory,
and conduct on-disk or off-heap interaction with the storage
systems. Each worker node consists of one or more executors
depending on number of cores used by a worker. Each executor
can also run multiple parallel tasks.

JAVA_Image

Ubuntu_OS_Image

Docker_Spark_Image

build dockerfile

Hadoop_Image

Spark_Image

Fig. 5. Method to build Docker_Spark_Image.
B. Implementations of Spark on VM and Docker

We build Apache Spark on VM and Docker to investigate
the performance difference of both implementations. Figures 3
and 4 show the architecture of Spark on VM and Docker. For
both implementations, one VM or Docker container is used as
the master node, and all others are worker nodes. Also, each
node has its own IP address and port.

For the VM setup, we have a number of virtual machines
running on a physical server via VM Hypervisor. Each VM
has its own guest OS as well as its own separate Spark data
processing workspace to manage executor files and database
as shown in Figure 3.

The Spark implementation on Docker comprises of multi-
ple simultaneously operating containers. As shown in Figure 4,
we do not need to maintain a guest OS in each container.
The container approach uses Bridge Docker() to connect
all containers. We build our Docker_Spark_Image with a
Dockerfile, which will be used to instantiate all containers
of Spark on the Docker framework.

Figure 5 illustrates the internal layers of the Spark
on Docker image. We first instantiate Ubuntu from
its image available on Docker Hub [48]. On top of
the Ubuntu OS layer, we load and install Java,
Hadoop (for HDFS), and Spark and then commit it as
Docker_Spark_Image. Finally, we compose our Spark
cluster using this Docker_Spark_Image, a .yml file con-
taining master and worker environment details like ports, DNS,
cores, volume directory, etc., and a .conf file that lists details
like max retries, event log directory, etc.

V. EVALUATION

A. Testbed and Platform Configurations

Table II summarizes the configuration of our testbed. We
deploy one master and eight worker nodes for Spark on
both VM and Docker frameworks as shown in Figures 3
and 4. We use open source measurement tools (dstat [49],
iostat [50], blktrace [51]) to measure performance
metrics such as total execution time of each application
(makespan), CPU utilization, memory utilization, disk I/O rate,
and network traffic.

B. Benchmarks
We consider different representative benchmarks in our

experiments in order to help Spark developers and users
evaluate a range of applications in a standard development
scenario. We implement a set of algorithms that are commonly
used in big data processing (see Table III). We categorize
these algorithms into three types: machine learning, graph
computation and SQL queries. Among them, most machine



TABLE II: Testbed configuration.

Component Specs
Server PowerEdge R630 Server

Processor Intel(R) Xeon(R) CPU E5-2660 v4
Processor Speed 2.00GHz
Processor Cores 56 Cores

Processor Cache Size 35M
Memory Capacity 64GB RDIMM

Memory Data Rate 2400 MT/s
Operating System Ubuntu 14.04 LTS
Docker Version 17.03
VM Hypervisor VMware Workstation 12.5

HDD Speed 7.2K RPM SATA 6Gbps
HDD Capacity 1 TB

0
10
20
30
40
50

C
C

A
M

SS
SP TC PR

M
M

S
G

M
D

TC LR K
M T

SD
S SSTo

ta
l E

xe
cu

tio
n 

Ti
m

e 
 

(m
in

)

Benchmarks

Docker VM
Fig. 6. Comparing total execution time of Spark applications running on
hypervisor based VM and containerized Docker.
learning algorithms and some graph computation algorithms
are iterative and their execution time can thus be determined by
the number of iterations. We also conduct sensitivity analysis
of these applications under different number of iterations.

TABLE III: Benchmark Details.

Application Type Benchmark

Machine Learning

K-Means(KM)
MinMaxScaler(MMS)
GaussianMixture(GM)

Logistic Regression (LR)
DecisionTreeClassification(DTC)

Tokenizer(T)
Alternating Least Squares(ALS)

Graph Computation

PageRank(PR)
ConnectedComponents(CC)

TriangleCounting(TC)
AggregateMessages(AM)

Single-Source Shortest Paths (SSSP)

SQL Queries SQLDataSource(SDS)
SparkSQL(SS)

C. Study of Execution Time
We first focus on studying the total execution time when

Spark applications are operated using either hypervisor vir-
tualization (VM) or containerized virtualization (Docker). We
deploy Spark applications on VM and Docker to ensure that
both implementations are performed with the same versions
of Ubuntu, Spark, Hadoop, etc., and the same resource allo-
cation settings like number of cores, memory capacity, etc. in
Spark configurations. Figure 6 shows the execution time of
Spark applications running on hypervisor-based virtualization
and containerized Docker. We see that Spark applications on
Docker containers perform mostly better than on VMs. This
is mainly because of (1) faster startup time and 2) faster

read operation of Spark applications on Docker containers. A
containerized Spark application usually starts in a couple of
seconds, but the same application on virtual machines needs
a couple of minutes to start up. Secondly, compared to VM,
read operations of Spark applications can be executed faster on
Docker containers because Docker maintains its own storage
driver and performs copy-on-write (COW). Meanwhile, we
observe that some applications like MMS and T receive similar
performance on both Docker and VM. More interestingly, the
K-Means (KM) algorithm has lower execution time on VM
than on Docker. We show results of some more experiments
using K-Means and investigate its behavior later in this Sec-
tion.

The execution time of some iterative applications might
be determined by application-related variables such as number
of iterations. Thus, we further investigate the performance of
these Spark applications (e.g., PageRank, Logistic Regression
(LR) and K-Means) across different setups for application-
related variables. Figure 7 shows the total execution times of
these three applications as a function of number of iterations
for PageRank and LR and number of clusters for K-Means.
First, we observe that even with varying the number of itera-
tions, Docker always performs better than VM for PageRank,
see Fig. 7(a). For a small number of iterations, the speed-up of
Docker when compared to VM is around 2x. As the number
of iterations increases, we get up to 10x speed-up for Docker.
This is because for each iteration, PageRank in Spark has a
high reuse factor of two particular RDDs, which are persisted
by Docker storage driver and thus can be quickly retrieved
from main memory. We also notice that the execution time of
LR is almost the same on Docker and VM across different
number of iterations, see Fig. 7(b).

However from Fig. 7(c), we see that VM performs slightly
better than Docker for K-Means. Here we vary the number of
clusters (K) instead of iterations in our experiments. We notice
that among all applications we consider, K-Means is the most
“shuffle-intensive”, especially when the number of clusters is
relatively high. Specifically, higher value of K means that
it needs to categorize the input data into more number of
clusters. This further increases the shuffle selectivity of K-
Means because for each data point the number of labeling
options increases and the distance of each data point from all
cluster centroids needs to be fetched every iteration. Moreover,
unlike those in-memory operations (e.g., map, reduce, join,
etc.), the shuffle operation is more expensive in Spark, since
it involves cross-executor broadcastings and longer time due
to corresponding disk I/Os, data serializations, and network
traffics. We analyzed these I/Os and found that the number
of “writes” is larger while performing shuffle. The Docker
file system (i.e., AUFS) performs copy-on-write (COW) for
every write operation. During shuffle, many COW operations
are triggered in Docker which may lead to a throttling stall
of operating threads. This dramatically reduces the benefits
brought by Docker, and slows down the performance compared
to VM. Thus, we conclude that it is advisable to use VM
rather than Docker for shuffle intensive applications in Spark.
We also verified this observation by experimenting with some
other shuffle intensive applications such as Bigram, TeraSort.
The results have the similar trends as those from K-Means.
We omit the results due to lack of space.



0
50

100
150
200
250
300
350

50 300 550 800 1050 1300To
ta

l E
xe

cu
tio

n 
Ti

m
e 

(m
in

)

Number of Iterations

Docker VM

(a)

0

20

40

60

80

100

50 200 350 500 650 800To
ta

l E
xe

cu
tio

n 
Ti

m
e 

(m
in

)

Number of Iterations

Docker VM

(b)

0

5

10

15

20

25

0 350 700 1050 1400 1750 2100To
ta

l E
xe

cu
tio

n 
Ti

m
e 

(m
in

)

Value of K (Number of Clusters)

Docker VM

(c)
Fig. 7. Total execution time with increasing number of iterations for (a) PageRank, (b) Logistic regression, and with increasing number of clusters for (c)
K-Means.

0
10
20
30
40
50

C
C

A
M

SS
SP TC PR

M
M

S
G

M
D

TC LR K
M T

SD
S SSC

PU
 U

til
iz

at
io

n 
(%

)

Benchmarks

Docker VM

(a)

0
10
20
30
40
50

C
C

A
M

SS
SP TC PR

M
M

S
G

M
D

TC LR K
M T

SD
S SS

D
is

k 
U

til
iz

at
io

n 
(%

)

Benchmarks

Docker VM

(b)

0
20
40
60
80

100
120

C
C

A
M

SS
SP TC PR

M
M

S
G

M
D

TC LR K
M T

SD
S SS

M
em

or
y 

U
til

iz
at

io
n 

(%
)

Benchmarks

Docker VM

(c)
Fig. 8. Average resource utilization while operating different benchmarks; (a) CPU Utilization, (b) Disk Utilization, and (c) Memory Utilization.

D. Study of System Resource Utilization
Finally, we investigate the utilization of different system

resources when running various benchmarks on VM or Docker
frameworks. Figure 8 present the CPU, disk and memory
utilization under different applications. First, we can see that
Docker has much higher CPU utilization ratios compared
to VM as shown in Figure 8(a). This means that Docker
can use CPU resources more efficiently. Secondly, Docker’s
disk utilization ratios are also slightly higher than those of
VMs for most applications (Fig. 8(b)). Interestingly, the K-
Means (KM) application is an exception, which has lower disk
utilization under Docker than under VM. This further validates
our observation (Sec. V-C) regarding the operations of shuffle
intensive applications. In contrast, as shown in Figure 8(c),
Docker has lower memory utilization ratios compared to VM
across all applications. The reason is that Docker bypasses the
guest OS so it demands less memory.

VI. CONCLUSIONS

In this paper, we investigated the performance of big data
processing applications running on Spark with different virtual-
ization frameworks. We built the end-to-end software stack for
the real implementation of different virtualization frameworks
and evaluated the robustness of this software stack with vari-
ous applications. We compared the de facto hypervisor-based
virtualization technique with the recently emerging lightweight
containerized virtualization framework (Docker) when deploy-
ing Spark. To best of our knowledge, this is the first research
work to study the Spark architecture and the operations of
Spark applications on different virtualization frameworks. We
explored the impacts of different virtualization techniques on
Spark applications’ execution latency and system resource
utilization. Our experimental results show that it is good to
use Spark with Docker for map and calculation intensive
applications because Docker provides lightweight operation,
copy-on-write (COW) and intermediate storage drivers that

assist Spark applications to perform better. On the other hand,
we observed that it is not advisable to run shuffle intensive
Spark applications on a containerized environment. In the
future, we plan to develop a hybrid virtualization environment
that can offer the options of both hypervised and containerized
instances for Spark applications and help determine the best
choice automatically based on the nature of applications.

VII. ACKNOWLEDGEMENTS

We would also like to show our gratitude to Danlin Jia and
Han Gao for sharing their hard work and pearls of wisdom with
us during the course of this research. This work was partially
supported by National Science Foundation Career Award CNS-
1452751 and AFOSR grant FA9550-14-1-0160.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on. IEEE, 2010, pp. 1–10.

[3] A. G. Shoro and T. R. Soomro, “Big data analysis: Apache Spark
perspective,” Global Journal of Computer Science and Technology,
vol. 15, no. 1, 2015.

[4] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[5] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pan-
durangan, and V. Balakrishnan, “Understanding Performance of I/O
Intensive Containerized Applications for NVMe SSDs,” in 35th IEEE
International Performance Computing and Communications Conference
(IPCCC). IEEE, 2016.

[6] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on. IEEE, 2015, pp. 171–172.

[7] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization
to support PaaS,” in Cloud Engineering (IC2E), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 610–614.



[8] R. Bosagh Zadeh, X. Meng, A. Ulanov, B. Yavuz, L. Pu, S. Venkatara-
man, E. Sparks, A. Staple, and M. Zaharia, “Matrix computations
and optimization in apache spark,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2016, pp. 31–38.

[9] H. Gao, Z. Yang, J. Bhimani, T. Wang, J. Wang, B. Sheng, and N. Mi,
“AutoPath: Harnessing Parallel Execution Paths for Efficient Resource
Allocation in Multi-Stage Big Data Frameworks,” in 26th International
Conference on Computer Communications and Networks (ICCCN).
IEEE, 2017.

[10] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim, “Per-
formance comparison analysis of linux container and virtual machine
for building cloud,” Advanced Science and Technology Letters, vol. 66,
no. 105-111, p. 2, 2014.

[11] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[12] T. P. (BlueData), “Lessons learned from running spark on docker.”
[13] Z. Lei, H. Du, S. Chen, C. Zhu, and X. Liu, “Dcspark: Virtualizing spark

using docker containers,” in Audio, Language and Image Processing
(ICALIP), 2016 International Conference on. IEEE, 2016, pp. 13–18.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[15] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. De Rose, “Performance evaluation of container-based virtualiza-
tion for high performance computing environments,” in Parallel, Dis-
tributed and Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on. IEEE, 2013, pp. 233–240.

[16] N. Regola and J.-C. Ducom, “Recommendations for virtualization
technologies in high performance computing,” in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International
Conference on. IEEE, 2010, pp. 409–416.

[17] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[18] “OpenVZ,” https://openvz.org.
[19] “Linux Container,” https://en.wikipedia.org/wiki/LXC.
[20] J. Roemer, M. Groman, Z. Yang, Y. Wang, C. C. Tan, and N. Mi,

“Improving Virtual Machine Migration via Deduplication,” in 11th
IEEE International Conference on Mobile Ad Hoc and Sensor Systems
(MASS 2014). IEEE, 2014, pp. 702–707.

[21] Z. Yang, M. Ghosh, M. Awasthi, and V. Balakrishnan, “Online
Flash Resource Migration, Allocation, Retire and Replacement Man-
ager Based on a Cost of Ownership Model,” Patent US15/094 971,
US20 170 046 098A1, 2016.

[22] Z. Yang, J. Wang, and D. Evans, “A Duplicate In-memory Shared-
intermediate Data Detection and Reuse Module in Spark Framework,”
Patent US15/404 100, 2017.

[23] J. Bhimani, M. Leeser, and N. Mi, “Accelerating k-means clustering
with parallel implementations and gpu computing,” in High Perfor-
mance Extreme Computing Conference (HPEC), 2015 IEEE. IEEE,
2015, pp. 1–6.

[24] ——, “Design space exploration of gpu accelerated cluster systems for
optimal data transfer using pcie bus,” in High Performance Extreme
Computing Conference (HPEC), 2016 IEEE. IEEE, 2016, pp. 1–7.

[25] J. Bhimani, N. Mi, and M. Leeser, “Performance prediction techniques
for scalable large data processing in distributed mpi systems,” in
Performance Computing and Communications Conference (IPCCC),
2016 IEEE 35th International. IEEE, 2016, pp. 1–2.

[26] J. Bhimani, N. Mi, M. Leeser, and Z. Yang, “FiM: Performance
Prediction Model for Parallel Computation in Iterative Data Process-
ing Applications,” in 10th IEEE International Conference on Cloud
Computing (CLOUD). IEEE, 2017.

[27] J. Bhimani, H. Huen, J. Yang, M. Awasthi, V. Balakrishnan, and
J. Martineau, “Intelligent Controller for Containerized Applications,”
2017, uS Patent App. 15/379327.

[28] J. Tai, D. Liu, Z. Yang, X. Zhu, J. Lo, and N. Mi, “Improving Flash
Resource Utilization at Minimal Management Cost in Virtualized Flash-
based Storage Systems,” Cloud Computing, IEEE Transactions on,
no. 99, p. 1, 2015.

[29] Z. Yang, M. Awasthi, M. Ghosh, and N. Mi, “A Fresh Perspective on
Total Cost of Ownership Models for Flash Storage in Datacenters,”
in 2016 IEEE 8th International Conference on Cloud Computing
Technology and Science. IEEE, 2016.

[30] Z. Yang, J. Tai, J. Bhimani, J. Wang, N. Mi, and B. Sheng, “GREM:
Dynamic SSD Resource Allocation In Virtualized Storage Systems With
Heterogeneous IO Workloads,” in 35th IEEE International Performance
Computing and Communications Conference (IPCCC). IEEE, 2016.

[31] Z. Yang, J. Wang, D. Evans, and N. Mi, “AutoReplica: Automatic Data
Replica Manager in Distributed Caching and Data Processing Systems,”
in 1st International workshop on Communication, Computing, and
Networking in Cyber Physical Systems (CCNCPS). IEEE, 2016.

[32] Z. Yang, M. Ghosh, M. Awasthi, and V. Balakrishnan, “Online
Flash Resource Allocation Manager Based on TCO Model,” Patent
US15/092 156, US20 170 046 089A1, 2016.

[33] Z. Yang, S. Hassani, and M. Awasthi, “Memory Device Having a Trans-
lation Layer with Multiple Associative Sectors,” Patent US 15/093 682,
2015.

[34] Z. Yang and M. Awasthi, “I/O Workload Scheduling Manager for
RAID/non-RAID Flash Based Storage Systems for TCO and WAF
Optimizations,” Patent US15/396 186, 2017.

[35] Z. Yang, J. Wang, and D. Evans, “Adaptive Caching Replacement
Manager with Dynamic Updating Granulates and Partitions for Shared
Flash-Based Storage System,” Patent US15/400 835, 2017.

[36] ——, “Automatic Data Replica Manager in Distributed Caching and
Data Processing Systems,” Patent US15/408 328, 2017.

[37] J. Wang, Z. Yang, and D. Evans, “Efficient Data Caching Man-
agement in Scalable Multi-stage Data Processing Systems,” Patent
US15/423 384, 2017.

[38] J. Wang, T. Wang, Z. Yang, Y. Mao, N. Mi, and B. Sheng, “SEINA:
A Stealthy and Effective Internal Attack in Hadoop Systems,” in Inter-
national Conference on Computing, Networking and Communications
(ICNC 2017). IEEE, 2017.

[39] J. Wang, T. Wang, Z. Yang, N. Mi, and S. Bo, “eSplash: Efficient
Speculation in Large Scale Heterogeneous Computing Systems,” in
35th IEEE International Performance Computing and Communications
Conference (IPCCC). IEEE, 2016.

[40] T. Wang, J. Wang, N. Nguyen, Z. Yang, N. Mi, and B. Sheng, “EA2S2:
An Efficient Application-Aware Storage System for Big Data Process-
ing in Heterogeneous Clusters,” in 26th International Conference on
Computer Communications and Networks (ICCCN). IEEE, 2017.

[41] C. Gokhan, Z. Karakaya, and A. Yazici, “Systematic mapping study on
performance scalability in big data on cloud using vm and container,”
in IFIP International Conference on Artificial Intelligence Applications
and Innovations. Springer, 2016, pp. 634–641.

[42] R. Zhang, M. Li, and D. Hildebrand, “Finding the big data sweet
spot: Towards automatically recommending configurations for hadoop
clusters on docker containers,” in Cloud Engineering (IC2E), 2015 IEEE
International Conference on. IEEE, 2015, pp. 365–368.

[43] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan, “Clash of the titans: Mapreduce vs. spark for large scale
data analytics,” Proceedings of the VLDB Endowment, vol. 8, no. 13,
pp. 2110–2121, 2015.

[44] “Docker Storage Driver,” https://docs.Docker.com/engine/userguide/
storagedriver.

[45] C. Peng, M. Kim, Z. Zhang, and H. Lei, “Vdn: Virtual machine
image distribution network for cloud data centers,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 181–189.

[46] R. Knauerhase, V. Tewari, S. Robinson, M. Bowman, and
M. Milenkovic, “Dynamic virtual machine service provider allocation,”
Jan. 2 2004, uS Patent App. 10/754,098.

[47] “Docker Copy On Write Strategy,”
docs.docker.com/engine/userguide/storagedriver/imagesandcontainers.

[48] “Docker Hub: Explore Official Repositories,” Accessed in 05/2017,
https://hub.docker.com/.

[49] “dstat,” https://dag.wiee.rs/home-made/dstat.
[50] “iostat,” https://linux.die.net/man/1/iostat.
[51] “blktrace,” https://linux.die.net/man/8/blktrace.


