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Abstract—Big data processing frameworks such as Hadoop
have been widely adopted to process a large volume of data. A
lot of prior work has focused on the allocation of resources and
the execution order of jobs/tasks to improve the performance
in a homogeneous cluster. In this paper, we investigate storage
layer design in a heterogeneous system considering a new type
of bundled jobs where the input data and associated application
jobs are submitted in a bundle. Our goal is to break the barrier
between resource management and the underlying storage layer,
and improve data locality, an important performance factor for
resource management, from the aspect of storage system. We
develop a sampling-based randomized algorithm for the network
file system to determine the placement of input data blocks. The
main idea is to query a selected set of candidate nodes, and
estimate their workload at run time combining centralized and
per-node information. The node with the smallest workload is
selected to host the data block. Our evaluation is based with
system implementation and comprehensive experiments on NSF
CloudLab platforms. We have also conducted simulation for
large-scale clusters. The results show significant performance
improvements in terms of execution time and data locality.

I. INTRODUCTION

The current big data processing platforms adopt the ‘scale-

out’ solution, where a cluster of servers collaborate to ac-

complish big data applications. The application job and the

corresponding input data are split into small tasks and asso-

ciated data blocks respectively. Each task can be executed on

any of the cluster nodes that can allocate the task’s demanded

computing resources. In such platforms, the storage layer

is usually managed by a network file system where data

blocks are distributed across the cluster with replicas. Data

locality is extremely important to the system performance

when executing the big data application because the current

platforms only prefer ‘move-compute-to-data’ paradigm, but

do not enforce it. It is possible that a task is executed on a

server that does not host the task’s input data block. In this

case, the input data block will have to be transferred from

another cluster node incurring a transmission overhead into

the task execution.

The data locality issue has been explored in a lot of prior

work, and new enhancement schemes have been proposed to

increase the chance of executing a task on the server hosting

its input data. However, the performance improvement from

these existing solutions is limited by dynamic run-time factors
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in practice, especially in a heterogeneous cluster where each

server has different hardware and software configurations.

The fundamental cause that hinders the optimization on data

locality is the separation of job execution and input data

uploading processes. In all the prior work, data locality is only

considered during the job execution by the job/task scheduler

assuming that the input data have been uploaded into the

network file system in a separate process. Without considering

the initial data block placement during the uploading process,

the existing solutions cannot optimize the data locality with

various job workloads and cluster configurations. In addition,

the prior work considers that the system performance of

execution time or makespan refers to the job execution process

excluding the time spent in uploading the input data. In

practice, however, there are many bundled jobs submitted to

a processing cluster that include both application jobs and

the reference of the input data that needs to be transferred

to the network file system. For this type of bundled jobs, the

performance should include the time spent in both uploading

the input file and executing the associated jobs.

In this paper, we target on the execution of bundled jobs in

a heterogeneous cluster, and present a new storage layer that

efficiently places data blocks across the cluster to improve

the data locality. When dispatching data blocks of the input

data, our solution considers the associated application jobs

and estimates the future executions. We apply randomized

algorithms to simplify and speed up the solution. Essentially,

our algorithm queries a small set of randomly selected candi-

date nodes for hosting a data block to estimate their run-time

workload. The data block will be uploaded to the node with

the smallest workload aiming to balance the workload of all

the nodes and thus improve the data locality. We implement

our solution in Hadoop YARN platform and evaluate it with

experiments and simulation. The results are highly supportive

with significant performance improvements.

The rest of this paper is organized as follows: Section II

reviews the prior work, and Section III introduces the back-

ground information and main motivations. The details of

our solution are presented in Section IV. We examine the

performance in Section V, and finally conclude in Section VI.

II. RELATED WORK

Scheduling is a significant direction in Big Data pro-

cessing systems. During various computing systems, Hadoop

YARN [1] is well used in both academia and industry. In
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Hadoop YARN, Fair Scheduler [2], Capacity Scheduler [3]

, and the latest DRF Scheduler [4] are embedded in the native

Hadoop YARN system to ensure each job can obtain a proper

share of the available resources. To improve the performance

of the computing systems, many scheduling works focus on

different directions. Some major directions and related works

are introduced as follows.

Job Aware Scheduling: Some scheduling algorithms take the

job characteristics into consideration. ARIA [5] and Deadline-

constraint Scheduler [6] allocate appropriate resources to jobs

to meet the predefined deadline. Sparrow [7] focuses on the

scheduling problems with large amount of small jobs.

Resource Aware Scheduling: Improving resource utilization

of the cluster is an important direction in the scheduling.

In this area, RAS [8] aims to improve resource utilization

across machines and meet jobs completion deadline. A fine-

grained resource scheduling, Haste [9], focuses on improving

resource utilization by leveraging the information of requested

resources, resource capacities, and dependency between tasks.

In addition, FRESH [10] and OMO [11] have developed

dynamic resource management schemes depending on the

various workloads of different jobs. However, these works

cannot perform well in the heterogeneous environment.

Heterogeneity Aware Scheduling: Heterogeneous environ-

ment is normality in practice because of different hardware and

software settings in each node of the cluster. In this direction,

Tetris [12] is a cluster scheduler which packs tasks to machines

based on their multiple resource requirements. In addition,

LATE [13], Hopper [14], Grass [15] and eSplash [16] are

proposed to stop unnecessary speculative executions in order

to improve the performance in heterogeneous clusters.

Data Locality Aware Scheduling: Some task scheduling

mechanisms focus on optimizing the locality of jobs’ input

data in the distributed file system. NKS [17] and [18] propose

data placement algorithms in the homogeneous environment.

Some recent works [19]–[21] distribute input data in het-

erogeneous clusters according to the disk capacity of each

node. However, the various resource capacities of each node,

and the resource demands of each task are not considered

comprehensively in these approaches.

Inspired by the preceding works, we develop EA2S2, an

application-aware storage system for the heterogeneous clus-

ters, to improve the system performance by optimizing the

input data placement. Based on the resource demands of

each task, capacities and processing capabilities of multiple

resources in each node, EA2S2can efficiently distribute data

blocks and reduce the makespan of a batch of jobs. EA2S2is

implemented in Hadoop YARN and also can be integrated into

other cluster computing systems.

III. BACKGROUND AND MOTIVATION

In this section, we present our target environment set-

tings and the background information about the representative

Hadoop YARN platforms. We also introduce the policies and

issues in the existing storage layer of Hadoop, and bring up

our motivation on the efficient storage design.

A. Cluster Setting and Job Size

In this paper, our target computing environment is a large

scale heterogeneous cluster consisting of hundreds or thou-

sands servers. A typical Hadoop cluster consists of a master

node and multiple slave nodes. In Hadoop framework, each

slave node declares it resource capacity in terms of the number

of CPU cores and the size of its memory. When submitting

a MapReduce job, the user specifies the resource demands

of each type of tasks (map and reduce tasks). The input file

of a job is split into fixed-sized blocks, and each map task

processes one block of data. The output data generated by

map tasks serve as the input data of reduce tasks.

The cluster Resource Manager (RM) running on the master

node, therefore, dispatches each task to one of the servers

for execution by allocating a resource container there with

the demanded CPU and memory resources. For any server,

the total amount of resources occupied by all the containers

running on it cannot exceed its declared resource capacity. In

addition, we consider that all the servers in the cluster may

show heterogeneous run-time performance due to the follow-

ing factors. First, the hardware and software configurations on

all the servers may not be identical. Second, there might be

other processing frameworks or services running in the same

cluster interfering the performance of Hadoop at the runtime.

For the job workload, this paper is focused on relatively

small jobs with input data size in the scale of GBs. It matches

the realistic workload mentioned in the prior work [7] and

observed in our experimental results. We have conducted

the TPC-DS benchmark [22] on a Hadoop cluster built with

Apache Hive [23]. A 100GB database is created, and 65 SQL

queries in TPC-DS are tested yielding 151 MapReduce jobs.

The average value of the input file size is 5.5GB, and 80%
jobs’ input files are smaller than 8GB.

B. Data Locality

The focus of this paper is to improve the data locality which

is an important performance factor in a Hadoop system. This

subsection briefly reviews the background and presents the

issues of the traditional system.

A Hadoop cluster is built upon a network file system

(HDFS) that manages the placement of all the data blocks

(with replicas). Hadoop defines three types of data locality

for map tasks: node-local, rack-local, and off-switch, referring

to different cases of the location of the resource container

and input data block of a task. ‘Node-local’ indicates that

the container for executing the task is allocated on a node

that hosts the corresponding input data block. In the case of

‘rack-local’, the node that is about to execute the map task

does not host the input data block, but there is a copy of the

data in the same rack, and can be transferred to the executing

node. In ‘off-switch’, the data block has to be transferred from

another rack for the execution. In either ‘rack-local’ or ‘off-

switch’, a network overhead is incurred for transferring the

data block to the node that allocates a container to execute the

task. It is not negligible considering the size of a data block,

short execution time of a map task, and heavy traffic loads in
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realistic clusters. Table I shows a comparison of the average

execution times of node-local and rack-local map tasks in four

different MapReduce benchmark jobs.

word count terasort word mean grep

Node local (NL) 35.27s 9.67s 19.53s 9.44s

Rack local (RL) 41.08s 25.56s 31.68s 21.82s

TABLE I: Comparison of execution times of NL and RL tasks

In this paper, we use ‘non-node-local’ and ‘rack-local’

interchangeably to represent the locality of rack-local and off-

switch in which case the input data has to be migrated to

the computing node. The overall impact of rack-local tasks

also depends on the frequency of their occurrences. The native

Hadoop YARN uses a random data block placement strategy

where each data block is hosted by a randomly selected node.

Unfortunately, it does yield a considerable portion of rack-

local tasks. Consider a cluster of n servers and a batch of

jobs each with m blocks (m ≪ n). Assume the HDFS

keeps k replicas of each data block, and all jobs map task

resource demands are the same. Once a node finishes a task

and releases the resources, the cluster RM will choose to

serve a job J and assign one of its map task to the node.

Assume there are j ∈ [1,m] pending tasks, we use P (j) to

represent the probability that a server hosts at least one input

data block of these j pending tasks. P (j) can be derived

as P (j) = 1 − (1 − k
n
)j , where k

n
is the probability that a

node is chosen to host one replica of one of these j input

data blocks. Thus, the expected number of node-local tasks

is
∑

j∈[1,m] P (j) and the complementary subset will be rack-

local tasks. Fig. 1 shows the analytical results of the rack-

local tasks in a cluster of 100 servers (n = 100) with varying

numbers of input data blocks and replicas. Apparently, rack-

local tasks take a large potion of all the tasks when m ≪ n.

The same observation is also confirmed in our experiments

where a 10-node cluster processes 40 MapReduce jobs each

with 4 input data blocks, and the HDFS keeps only one replica

of every block. Out of 160 map tasks, 82% are rack-local tasks.
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Fig. 1: Expected percentage of rack-local tasks with varying

input data size and three replica settings (n = 100)

C. Bundled Jobs

In a traditional Hadoop system, executing a job and upload-

ing its input data are separately handled by Resource Manager

(RM) and the network file system (HDFS) respectively. Data

locality is preferred by RM, but not enforced. As we have

shown with analysis and experiments, the ratio of node-local

tasks is quite low under our target workload setting. In this

paper, we aim to improve the data locality in the process of

uploading the input data by appropriately arranging the initial

placement of the data blocks.

Input Data

Job 3

Job 2

Job 1

HDFS

Resource 
Manager

Master

Slaves

s1

s2

sn

… …

Bundled Job

Fig. 2: Illustration of processing a bundled job

We consider the Hadoop cluster is running a type of bundled

jobs, where the input data and its processing jobs are submitted

together as a bundle. The input data can be uploaded by the

user, or from external storage sites such as Amazon S3. In this

setting, the user considers the cluster as a computing site, but

not for long-term or permanent data storage. After the jobs are

finished, the input data will be deleted from the HDFS. Fig. 2

illustrates the basic process. The main difference compared

to the traditional Hadoop is that the HDFS is aware of the

jobs associated with the input data, and thus could use this

information to better dispatcth the data blocks in the cluster.

Therefore, our problem is formulated as follows. The ob-

jective is develop an efficient data block placement scheme in

HDFS to help minimize the makespan of a batch of bundled

jobs executed by a heterogenous cluster.

Cluster setting: We consider a heterogeneous cluster of n
servers, S = {S1, S2, . . . , Sn}, and each server Si is config-

ured with resource capacity Ri.

Job setting: We assume that there are a limited set of types

of jobs, each identified by a unique job ID in the system. A

batch of bundled jobs are submitted to the cluster by the users.

Each bundled job BJi includes one input data file, and a set

of application jobs to process the data. We use Jij to represent

the j-th job in BJi, and we assume BJi’s input data consists

of mi blocks (referring to mi map tasks). We further use Dij

to represent the resource demands of a map task of Jij .

HDFS setting: Assume the HDFS configures the data block

size as B bytes, and keeps k replicas of each data block.

The following Table II is a summary of the notations that

will be used in the rest of this paper.

n/Si number of servers in the cluster/i-th server

Ri resource capacity of Si

BJi / Jij i-th bundled job / j-th application job of BJi
mi number of data blocks of job BJi input data

Dij resource demands of a map task of Jij
Eij avg execution time of a map task of Jij
bi / BUi data block i / block usage info of bi
B/k data block size/number of replicas in HDFS

TABLE II: Notations
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IV. SYSTEM DESIGN OF EA2S2

In this section, we present the details of our new storage

system design. We will first introduce the main sketch of

the algorithm, and then discuss about the most important

component of estimating the workload. Finally, we incorporate

dynamic and empirical factors into our design to further

improve the performance.

A. Main Algorithm

Generally speaking, the fundamental cause of non-local

tasks is the mismatch of each server’s workload and its hosted

data blocks. When a sever exhausts its hosted data blocks

sooner, i.e., finishes its assigned workload faster, than other

servers, it will migrate some pending tasks from other severs,

and execute them as non-local tasks. In traditional Hadoop

systems, while uploading input files and submitting jobs are

separate, it is impossible for HDFS to consider the future

workload when distributing the data blocks.

In this paper, when handling the bundled jobs, HDFS is able

to estimate the workload information to place the data blocks

more appropriately. However, Hadoop is a quite complex

system and the run-time execution environment is highly

dynamic. It is difficult to quantitatively derive the impact of

non-local tasks on the overall performance of execution time.

Therefore, we consider an alternative objective of balancing

the workload, which is defined as the execution time of local

tasks, among all the servers.

Intuition. In particular, we develop an Efficient Application-

Aware Storage System (EA2S2) for cluster-based big data

platforms such as Hadoop. The main idea of our solution

EA2S2 is to utilize the application information in the bun-

dled job, and estimate the future workload of each server

to determine the placement of the input data blocks. We

consider that each server maintains the historical execution

time of the different types of tasks assigned to the server. In

order to estimate the workload of a server, the master node

needs to query the server to fetch the historical records. This

design of distributed structure rather than gathering all cluster

information into the master node is based on the following

two facts and principles. First, it has been a common practice

in large scale systems that the centralized management at the

master node should be as simplified as possible to reduce its

workload. It is inappropriate to keep a large amount of per-

node information on the master node. The Hadoop system

also follows the principal having NodeManager as per-node

agent and ApplicationMaster as per-job agent to mitigate the

management tasks on the master node. Second, some run-time

dynamic factors of each slave node may not be available at

the master node. For example, the resource utilization of a

salve node affects the estimation of its workload, but cannot

be obtained from the master node.

Sampling-based Randomized Algorithm. In a large scale

cluster, it is inefficient to query all the nodes to estimate their

workload and decide where to upload an input data block

to. Especially in our target workload with small job sizes,

uploading input files and executing the bundled jobs do not

take a long time. Thus the overhead incurred by querying a

lot of slave nodes could be considerable in the whole process.

Our design is based on sampling algorithms adopting the

power of two/multiple choices. For each data block, the

algorithm randomly selects some nodes as candidates, and then

compares the estimated workload of each candidate. The node

with the smallest workload will be selected to host the data

block. Algorithm 1 illustrates the detailed steps. The main

structure is a loop (lines 2–11) enumerating all the input data

blocks. For each of them, we use HN to represent the set of

hosting nodes initialized as an empty set (line 3). The inner

while loop (lines 4–9) is to select k distinct hosting nodes

to place the k replicas of the data block bj . The sampling

algorithm randomly select d slave nodes from the candidate

set CS and query them to estimate their workload. CS is

derived by a function of HN . For the first replica, all slave

nodes are candidates. But for the rest of the replicas, i.e., when

HN is not empty, the candidate set may be a subset of the

nodes in the cluster according to replica management policies.

For example, Hadoop system prefers to distribute the replicas

into different racks. In lines 7–8, the algorithm compares the

estimated workload of the candidate nodes, and adds the one

with the smallest workload into HN . Finally, in line 10, the

data block bj is uploaded to all the slave nodes in HN .

Algorithm 1: Uploading Input Data

input : mi : number of input data blocks of Ji,
k : number of replicas

1 Split input file into mi blocks, {b1, b2, . . . , bmi
};

2 for j = 1 to mi do

3 HN = {} ; // set of hosting nodes

4 while |HN | < k do

5 CS =SelCand (HN ) ; // candidate set

6 RS : Randomly select d nodes from CS;

7 a = argminx∈RS EstLoad (x);

8 add Sa to HN ;

9 end

10 Upload data block bj to every node in HN ;

11 end

Batch Sampling. The above Algorithm 1 illustrates the basic

sketch of EA2S2. In our implementation, we enhance the

design by adopting a batch sampling scheme similar to [7] to

improve the efficiency. Instead of querying d candidate servers

for each replica of the mi data blocks, our algorithm queries

a batch of M servers, and place all mi blocks (each with k
replicas) to a subset of these servers.

The value of M is determined by the expected number of

distinct servers selected by Algorithm 1. For one round of

selection, a slave node is chosen with a probability of d
n

. After

all mi · k rounds, the probability that a server is selected in at

least one rounds 1− (1− d
n
)mi·k. Therefore, we set

M = n · (1− (1 − d

n
)mi·k).
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Comparing to the basic sampling algorithm, batch sampling

yields less overhead and apparently the performance is no

worse than basic sampling in terms of balancing the workload.

B. Estimation of Workload

In this subsection, we present the details of the estimation

of the function EstLoad(x) in Algorithm 1. The workload

of each node is affected by various factors, and we classify

the relevant information into the following two categories for

estimating the workload.

Centralized information. This category of information is

static and available at the master node. It includes cluster

configuration, such as resource capacity of each slave node

and HDFS block size, and the run-time information that can

be obtained from the management modules running on the

master node, such as the currently active jobs (from Resource-

Manager) and data block distribution (from NameNode). We

consider that retrieving this type of information yields no

overhead.

Per-node information. This category of information is spe-

cific to each node and kept on each node. The storage

system has to contact the node to fetch the information. It

includes run-time system status such as resource utilization,

and performance statistics such as the historical execution time

of a type of tasks.

Particularly, our algorithm considers the following informa-

tion for estimating the workload on each node:

• Resource capacity of Si (Ri): This is centralized and static

information of each node including a tuple value, where

each element indicates the capacity of a type of resource.

For example, 〈8 cores, 64G〉 represents 8 CPU cores and

64G memory.

• Bundled job information: This is centralized information

recorded on the master node throughout the execution of

the bundled job. It includes the input data blocks and the

associated application jobs. Given a data block ID, the

master node is able to find which bundled job it belongs to,

and retrieve the set of application jobs that are planned to

process the data block.

• Execution time of a job Jij’s map task (Eij ): This

is per-node statistical information maintained by each

node. This information is updated every time a task is

finished at the slave node. This is the most important

information for estimating the workload, and each node

uses a 3-dimensional matrix ET to keep the record.

For a given job Jij (j-th job in bundled job BJi), its

map tasks’s execution time is recorded based on the job

ID/type, the resource demands, and the resource utilization

of the node. All three parameters are relevant to the

execution time of the map task. When the master node

queries a slave node for the average execution time Eij .

The slave node will check the matrix and return Eij =
ET [JobID,ResourceDemand,ResourceUtilization].
When the requested cell in ET has no value, the slave node

returns the value in the closest cell. We also use EWMA

(exponentially weighted moving average) to maintain the

average execution time for each element in ET .

• Data block usage information (BUi): This is a per-node

information that records the usage information of the data

blocks. For any data block bi hosted at the node, BUi is

a set of job IDs indicating the jobs whose map tasks have

processed the block bi. This information helps estimate the

pending jobs that may execute node-local tasks on the node.

Algorithm 2 presents the details of our workload estimation

function. First, the master prepares a query by forming a

requested job set (RJ) of all application jobs in active bundled

jobs (lines 2–4). Then set RJ is sent to node x. For each job

Jij ∈ RJ , its map task’s resource demands Dij is sent with

the query as well. After receiving the query, the slave node x
retrieves the job ID and resource demands of each Jij ∈ RJ ,

and checks its current resource utilization. Then it searches the

performance matrix ET and return a list of average execution

times (Eij ), one for each job Jij . In addition, the slave node

returns the block usage information BUy for each block bj
it hosts (line 6). Once Eij and BUy are received, the master

node estimates the workload of node x as follows. First, the

algorithm identifies the pending application jobs that have

not been finished by checking the bundled job information

and BUi (lines 7–13). For each pending job, we also count

how many input data blocks are hosted at node x represented

by cij . In lines 14–17, our algorithm estimate the execution

time of Jij ’s map tasks by multiple the obtained average

execution time Eij with the estimated number of rounds

of execution considering concurrent execution of multiple

map tasks. Given demand Dij and resource capacity Rx, the

number of concurrent tasks that can be execute at node x can

be estimated as

Rx

Dij

= minu{
Rx(u)

Dij(u)
}, (1)

where u is the index number of different types of resources.

Then the number of rounds is estimated as cij/
Rx

Dij
(line 15).

C. Dynamic Adjustment

Finally, our algorithm also adjusts the workload estimation

based on dynamic factors. At run-time, the workload estima-

tion may be inaccurate and lead to a wrong decision of the

hosting slave node. We include the following two empirical

information to help the algorithm adjust the estimation.

First, when querying the candidate slave nodes, our algo-

rithm also request the node-local task ratio, which is defined

as the ratio between the number of node-local tasks and total

number of tasks that have been executed at a slave node in a

pre-configured past time window. For example, if a slave node

has executed 100 map tasks in the past 10 minutes, and 80

of them are node-local tasks (i.e., the other 20 are rack-local

tasks), the node’s node-local task ratio is 0.8. A low node-

local task ratio indicates that our algorithm overestimates the

node’s workload, and thus allocates too few data blocks on

the node. Assume LTRi indicate the node-local task ratio

of node i. When comparing the workload of d nodes, our
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Algorithm 2: Estimate Workload

1 Function EstLoad(node x):

2 for any active bundle job BJi do

3 RJ = RJ ∪ Jij ; // requested jobs

4 end

5 send a query including RJ and resource

demands (Dij) to node x;

6 receive Eij and BUy; /* avg exe time of

Jij, and block usage info of by at x */

7 for each BUy do

8 find the associated BJi of block by;

9 for each Jij /∈ BUj do

10 PJ = PJ ∪ {Jij}; // pending jobs

11 cij ← cij + 1;

12 end

13 end

14 for each Jij ∈ PJ do

15 rij = cij/
Rx

Dij
; // rounds of execution

16 w = w + Eij · rij ;

17 end

18 return w;

algorithm considers the value of LTRi · EstLoad(i) (line 7

in Algorithm 1).

Second, we consider the resource capacity of each candidate

node and the currently occupied resources in the cluster. With

multiple resources (CPU and memory in Hadoop), one of

them could become the bottleneck while other resources are

still available in a busy cluster. The bottleneck resource that

has been fully occupied is more important to the cluster at

the moment. Therefore, when comparing the workload of

the candidate slave nodes, our algorithm checks the current

bottleneck resource, and compares its capacity on each candi-

date. The slave node with more bottleneck resources is more

likely to be assigned with more tasks by the RM. And our

estimation of the workload might be lower than its actual

value. Therefore, we adjust our workload estimation for node

i as (1 + ǫi) · EstLoad(i), where ǫi is proportional to node

i’s capacity of the bottleneck resource, and
∑

ǫi = τ . The

total adjustment over all candidate nodes is limited to a small

portion defined by τ (in our algorithm, τ = 0.1).

V. PERFORMANCE EVALUATION

In this section, we present the evaluation results of our

solution EA2S2. We conduct both experiments and simulation

with comprehensive settings. The major performance metrics

we examine are the execution time (makespan of multiple

bundled jobs) and the data locality (the ratio of node-local

tasks).

A. System Implementation and Alternatives for Comparison

EA2S2is implemented on Hadoop YARN 2.7.1. We have

also implemented the following two alternatives based on only

centralized information for performance comparison.

• Capacity Block Placement: This alternative approach esti-

mates the workload of a node based on its resource capacity

and the resource demands of the bundled job. When upload-

ing data blocks for a bundled job BJi, the workload of a

candidate node x is estimated as wx =
∑

j
Rx

Dij
where each

term is the same as in Eq. 1. The basic intuition here is that

the node which can allocate resources for more tasks in the

bundled job is preferred to host more data blocks.

• Total Block Placement: This approach simply estimate the

workload of a slave node as its hosted input data blocks of

all active bundled jobs. This information can be retrieved

by querying the NameNode service running on the master

node.

We implement two new modules on the master node,

Bundledjob-Agent (BA) and HDFS-Agent (HA), and one

new module on the slave nodes called Node-Agent(NA). BA

handles the submission of bundled jobs, and passes the request

of uploading the input files to HDFS. Once the input data is

ready, BA submits the associated application jobs to Hadoop

scheduler. Our main sampling algorithm for uploading data

blocks is implemented in HA. It also interacts with BA to

fetch the information of bundled jobs, and queries Hadoop

RESTful APIs to obtain cluster information. In addition, NA

running on each slave node maintains the per-node information

and responds to the queries from HA.

B. Evaluation

We evaluate EA2S2 on small clusters of 4 and 10 slave

nodes with experiments, and also conduct simulation for large-

scale tests. By comparing makespan and local task percentage

with native Hadoop, Capacity Block Placement and Total

Block Placement, we show that EA2S2 improves clusters’

performance with shorter makespan and higher data locality

comparing with other policies. In all our experiments, the

block size of HDFS is 256MB and the number of replicas

is set as k = 1. In EA2S2, the number of candidate slave

nodes in Algorithm 1 is set as d = 2.

1) 4 Nodes Cluster: We first test the performance on a

5-node cluster (1 master and 4 slaves), where each node is

equipped with 8 CPU cores and 16G memory.

Workload: We run a batch of commonly used benchmarks,

• WordCount (WC): count the occurrences of each word;

• TeraSort (TS): sort (key,value) tuples on the key with the

synthetic data as input;

• WordMean (WM): count the average length of the words;

• Grep: grep words that match specified lambda expression.

Table III shows resource demands of each benchmark.

Job map core map mem red num red core red mem

WC 1 4 1 1 4

TS 2 3 1 2 3

WM 2 4 1 2 4

Grep 1 3 1 1 3

TABLE III: Resource Demands of Application Jobs

We consider that a bundled job consists of a 5G input file,

and four application jobs (one from each benchmarks above).
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Four bundled jobs are submitted continuously to eh cluster

yielding totally 20 Hadoop jobs (a Grep job includes two

individual Hadoop jobs, ‘search’ and ‘sort’ ). For each setting,

we repeat the test for five times and present the average values

here.

Environment Setting: We configure a heterogeneous environ-

ment by pushing CPU stress with linux stress tool and setting

every slave in various resource capacities. The following three

settings are considered in our evaluation.

Setting 1, 2 (CPU Stress): We configure the cluster under

CPU stress following Setting 1 and Setting 2 (Table IV).

The unit for CPU is number of vcores and for memory

it is GB. Stress values indicate the CPU interference from

other processes. A higher value represents more stress, thus

less CPU capability for the Hadoop framework. In Setting 1,

large capacity slaves are under more pressure comparing with

Setting 2 in which slaves with less capacity are suffering more

CPU stress.

CPU mem stress

n1 6 7 0

n2 8 10 8

n3 12 12 12

n4 10 8 4

CPU mem stress

n1 12 12 0

n2 10 8 8

n3 6 7 12

n4 8 10 4

TABLE IV: 4-Node Cluster Setting 1, 2 (Capacity and Stress)

Setting 3 (Homogeneous): Master and slaves are configured

with 8 vcores, 12G memory and no stress.

Performance Evaluation: We first present the average execu-

tion time of map tasks on each slave node in Fig. 3 and 4. The

results include the performance of both node-local tasks and

non-local tasks. The execution times of local tasks in Fig. 3

validate our heterogeneous setting with CPU stress. The node

with a larger stress value spends longer time to finish the map

task. But in Setting 3 of a homogeneous cluster, the execution

times on all the nodes are very close to each other as shown

in Fig. 4. In addition, we observe that the execution times of

non-local tasks are significantly prolonged compared to the

corresponding local tasks. The network overhead, especially

in a network with heavy traffic, yields a considerable negative

impact on the task/job execution.

Next, we examine the overhead incurred by our solution

n4 in the process of uploading input files. In our solution,

HDFS has to query candidate slave nodes and decide the

placement of data blocks. Fig. 5 shows the increased time of

uploading a 5G input files comparing to the baseline of native

Hadoop. Apparently, the overhead of n4 is negligible (as low

as 0.23%). Capacity Block Placement also incurs a similar

overhead because of the access to system RESTful APIs.

Finally, we illustrate the performance of makespan in Fig. 6.

Each value represents the time elapsed from uploading the

first file to the finish of the last job. In homogeneous system,

Total Block Placementwhich evenly places blocks among

slaves achieves the best performance by shortening the overall

time by 4.38% comparing to native Hadoop. However, in

both heterogeneous cases (Setting 1 and 2), n4 is superior

to all other schemes. Combining per-node information to

Fig. 3: Task average execution time in Setting 1 and Setting 2

Fig. 4: Task average execution time in Setting 3

Fig. 5: Increased time of uploading a 5G input file

estimate the workload mitigates the dynamic uncertainness and

mismatch between computing ability and hosted data blocks

on each slave node. Our solution improves the makespan by

8.92% and 7.18% respectively in Setting 1 and 2.

2) 10 Slave Cluster Tests: We also conduct experiments on

a 11-node cluster with smaller input data files to evaluate the

scenario where the data blocks are fewer than the cluster size.

Environment Setting: We launch a cluster with one master

node and 10 slave nodes on NSF CloudLab platform. Physi-

cally there are 8 ARMv8 cores at 2.4GHz, 64 GB memory and

120 GB storage in each server. Network bandwidth is limited

under 300Mbps. In our tests, we generate a heterogeneous

capacity configuration as follows:

• 2 slave nodes are configured with 〈4 vcores, 16G〉;
• 4 slave nodes are configured with 〈8 vcores, 32G〉;
• 2 slave nodes are configured with 〈4 vcores, 32G〉;
• 2 slave nodes are configured with 〈2 vcores, 8G〉.

Fig. 6: Makespan of 4 slaves cluster including uploading time



8

We disturb slave’s performance by introducing diverse CPU

stress as shown in Table V. In addition, homogeneous envi-

ronment is tested as Setting 3.

Setting 1, CPU Setting 2, CPU

slave 1,2,7,8 0 32

slave 3,4 24 16

slave 5,6 16 24

slave 9,10 32 0

TABLE V: Stresses of 10 slaves cluster in Setting 1 and 2

Workload: Similar to the previous experiments, we consider

that a bundled job includes an input file and four benchmark

application jobs. In this test, we submit 20 bundled jobs one

after another with an interval of 20 seconds. Each setting is

repeated for 5 times and the average value is presented below.

Performance Evaluation: The results are shown in Fig. 7

including the overall makespan and the number of local tasks.

In Setting 3, the numbers of local tasks in native Hadoop and

n4 are similar, because per-node information may not yield a

significant impact. As a result the makespan of n4 is slightly

worse than that of native Hadoop considering the overhead our

solution incurs in HDFS. In the two heterogeneous settings,

however, n4 performs much better than native Hadoop. In

Setting 1, with a certain amount of CPU stress applied to the

cluster, the performance of native Hadoop is actually close to

that in Setting 3 with no stress. It indicates that this particular

setting and the default scheduler in native Hadoop somehow

mitigates the computation interferences very well. In such a

case, our solution n4 still reduces the makespan by 4.9%. In

Setting 2, more nodes are under high CPU stress. Both native

Hadoop and n4 yield longer makespans. Comparing to Setting

3 with no stress, native Hadoop’s makespan is increased by

12.54% while n4’s makespan is increased by 6.69%. n4 is

3.56% more efficient than native Hadoop in Setting 2. In terms

of data locality, n4 significantly increases the number of local

tasks by 41.46%.
3) Simulation: Furthermore, we implement a simulator to

mimic the execution of Hadoop jobs in order to evaluate our

solution in a large scale cluster. All the parameters related to

the job execution are imported from our experiments.

Environment Setting: We configure a heterogeneous cluster

by randomly selecting values for resource capacity of each

slave nodes. The number of CPU vcores is randomly selected

in [2− 8] while the memory capacity is chosen in [4G, 16G].
We also use a random integer L chosen from [1,

√
clustersize]

to indicate the computation ability of a slave node. We assume

that HDFS configures the block size to be 256M, and the

number of replicas is 1/10 of cluster size.

In addition, we set the task execution time according to our

experiments, i.e., the average map task execution time of WC,

TS, WM and Grep is 28s, 9s, 15s and 8s respectively in a

homogeneous system without extra pressure. For every task

in this simulation, we assign it a baseline time BT after it is

accepted by a node Si.

BT =

{

avg if this task is a node-local task;

avg + § otherwise,

Fig. 7: Makespan and local task amount of 10 nodes cluster

Fig. 8: Makespan of Simulated Clusters

where § is a random value indicating the extra overhead for

non-local tasks. Its value selection range is also set based on

our experiments. Eventually, the actual execution time of this

task is set as BT · L.

Worload: In our simulation, each input file size is an integer

randomly picked from [clustersize/100, clustersize/5], it

does not change between policies. The application jobs we

consider are same benchmarks mentioned in Fig. III. Each

input file is bundled with four benchmarks, and 5 bundled

jobs are submitted in one session. We repeat five sessions for

each setting and show the average value below.

Performance Evaluation: Fig. 8 shows the performance of

makespan and data locality with the cluster size ranging from

50 to 800. The performance of makespan is represented by

the shortened percentage compare to the baseline of native

Hadoop. We observe that in large scale clusters, the perfor-

mance improvement of all three schemes are more significant

in most cases. But both Capacity Block Placement and Total

Block Placement show a trend of decreased improvement

when the cluster size reaches 400. Our solution EA2S2,

however, keeps a high improvement ranging from 17.51% to

29.75% in all the tested cases. One of the main causes is the

improvement of data locality. EA2S2 increases the number of

local tasks by 5.52%− 14.23% in the simulation.
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VI. CONCLUSION

In this paper, we develop a new storage system to efficiently

serve bundled jobs in large scale big data processing platforms.

Our system improve the data block placement when uploading

them by considering the associated application jobs. Sampling-

based randomized algorithm is adopted to select the candidate

node with the minimum workload to host new data blocks. In

addition, we develop algorithm to efficiently and accurately

estimate the workload of each candidate node. Our solution is

evaluated with experiments and simulation. The results show

that our solution is significantly superior to the native Hadoop

storage system.
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