
FIOS: Feature Based I/O Stream Identification for Improving
Endurance of Multi-Stream SSDs

Janki Bhimani∗, Ningfang Mi∗, Zhengyu Yang∗, Jingpei Yang†,
Rajinikanth Pandurangan†, Changho Choi†, and Vijay Balakrishnan†

∗ Dept. of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115
† Memory Solution Research Lab, Samsung Semiconductor Inc., San Jose, CA 95134

Abstract—The demand for high speed ‘Storage-as-a-Service’
(SaaS) is increasing day-by-day. SSDs are commonly used in
higher tiers of storage rack in data centers. Also, all flash data
centers are evolving to better serve cloud services. Although SSDs
guaranty better performance when compared to HDDs, but SSDs
endurance is still a matter of concern. Storing data with different
lifetime in an SSD can cause high write amplification and reduce
the endurance and performance of SSDs. Recently, multi-stream
SSDs have been developed to enable data with different lifetime
to be stored in different SSD regions and thus reduce write am-
plification. To efficiently use this new multi-streaming technology,
it is important to choose appropriate workload features to assign
the same streamID to data with similar lifetime. However, we
found that streamID identification using different features may
have varying impacts on the final write amplification of multi-
stream SSDs. Therefore, in this paper we develop a portable and
adoptable framework to study the impacts of different workload
features and their combinations on write amplification. We also
introduce a new feature, named "coherency", to capture the
friendship among write operations with respect to their update
time. Finally, we propose a feature-based stream identification
approach, which co-relates the measurable workload attributes
(such as I/O size, I/O rate, etc.) with high level workload
features (such as frequency, sequentiality etc.) and determines a
good combination of workload features for assigning streamIDs.
Our evaluation results show that our proposed approach can
always reduce the Write Amplification Factor (WAF) by using
appropriate features for stream assignment.

Keywords—Multi-Streaming, Write Amplification Factor
(WAF), StreamID Identification, Coherency

I. INTRODUCTION

The SSDs have become the main building blocks to support
enterprise data centers and virtualized cloud environments
due to their high I/O bandwidth compared to traditional hard
disk drives (HDDs). With prevailing flash devices everywhere
from specialized computing servers to user laptops, the spe-
cial characteristics of flash such as Wear Leveling, Garbage
Collection (GC) and Write Amplification (WA) are now well
understood. Thus, although with many advantages of NAND
flash technology, one major drawback lies in its internal Write
Amplification (WA).

Multi-stream SSDs: In real I/O intensive applications, data
often have high variability in their lifetime. This inevitably
causes a large degree of data fragmentation due to data
invalidation and then dramatically increases the WAF when
garbage collection is triggered. To address this issue, the
storage industry recently developed a new multi-streaming
technology [2] that allows a host system to explicitly open
different "streams" in SSD devices and allocate write requests
to these streams according to the expected lifetime of data.

This work was initiated during Janki Bhimani’s internship at Samsung
Semiconductor Inc. [1]. This work was partially supported by National Science
Foundation Career Award CNS-1452751, and Samsung Semiconductor Inc.
Research Grant.

Applications

File	System

Physical	Data	Store	According	to	StreamIDs

Blocks with 
StreamID=1

Blocks with 
StreamID=2

Blocks with 
StreamID=3 …

… … …

FTL

M
ul

ti-
st

re
am

 S
SD

Logical Block + StreamID

Block	I/O	Layer

StreamID Identification

H
os

t

I/O

Files

Fig. 1. Operation of Multi-stream SSDs with respect to I/O stack

Traditional SSDs have only one active append point where
new data is written. Now, multi-stream technology enables
the device to maintain more than one open erase blocks to
append data writes in different physical locations of an SSD.
In a multi-stream SSD [3], streamIDs are assigned to data
according to their lifetime. The assignment of streamIDs can
be done at any layers, such as the application layer, the file
system layer or the block layer. Figure 1 shows the I/O stack
of a multi-stream SSD where streamID identification is done
at the block layer. Once each logical block is assigned a
streamID, a list of logical blocks with their corresponding
streamIDs will be sent as an input to the Flash Translation
Layer (FTL) in the multi-stream SSD device. The FTL then
stores data blocks with the same streamID to the same physical
blocks. This ensures that data with the same lifetime (i.e.,
the same streamID) can be invalidated together, which thus
reduces the garbage collection overhead and results into low
write amplification by avoiding extra internal data movements.

Challenges of Using Multi-Stream Technology: An ef-
ficient streamID assignment in multi-stream flash drives can
reduce write amplification, and improve endurance of SSDs.
To achieve the best possible benefit of multi-stream SSDs, it
is critically important to construct good streams. To frame
good streams, data with similar lifetime should be assigned
the same streamIDs. It is challenging to predict the data
lifetime. The historical information of different features (such
as frequency, sequentiality, etc.) for past data accesses can be
used to predict the expected lifetime of data. However, we
found that stream identification using different features may
have different impacts on the WAF of multi-stream SSDs.
Moreover, feature sets that can accurately capture the expected
lifetime of data may vary with different applications and
workloads. Using a combination of not useful features cannot
offer good performance improvement of multi-stream SSDs
over no-streaming legacy SSDs. Therefore, a good streamID



assignment technique to quantify the impact of different fea-
tures and their combinations on the endurance of SSDs is
important.

Novel StreamID Assignment Approach: In order to
efficiently use multi-stream SSDs, we develop a portable and
adoptable multi-stream framework to extract various I/O work-
load features and study the impacts of these features and their
combinations on write amplification of multi-stream SSDs.
Some well-known features, such as frequency, adjacent access,
and sequentiality, are considered in the feature extraction for
capturing the lifetime of data. But, we sometimes observed
that these features are not sufficient to capture the lifetime of
data when using them individually. We thus propose a new
feature, named coherency, to capture the friendship between
logical blocks. Coherency can be more closely related to the
lifetime of data. By investigating all these different features,
we found that (1) none of the features (such as frequency,
adjacent access, sequentiality and coherency) can be claimed
as the best for all I/O workloads, (2) different features have
varying impacts on WAF, and (3) the benefit derived by using
the combination of multiple features is not additive. Therefore,
another big challenging issue in developing this multi-stream
framework is how to determine a combination of workload
features that is best for assigning appropriate streamIDs under
a given I/O workload.

To address this issue, we build an analytical correlation
model to capture the co-relation between easily obtained
workload characteristics (such as I/O size, random write ratio,
reuse ratio, and autocorrelation of write rates) with high-
level workload features (such as frequency and coherency)
and develop a novel Feature-based I/O Stream identification
(FIOS) method to identify best set (or combination) of features
suitable to a workload for streamID assignment. FIOS can
obtain a good feature combination automatically, rather than
experimenting all possible combinations. We modify the SSD
module of DiskSim1 [4] to simulate the multi-stream SSDs.
We implement FIOS in modified DiskSim and compare FIOS
with the existing equal-partition (EP) streamID identification
algorithm that is currently used in multi-stream SSDs. We also
consider the legacy SSDs that do not use the multi-streaming
technology as the baseline. Our experimental results show that
FIOS can always identify a good combination of appropriate
features to decide streamIDs and thus be able to improve the
lifetime of SSD devices by reducing WAF.

II. FRAMEWORK DESIGN

In this section, we explain the design and the main com-
ponents of our framework.
A. FIOS Design

The block diagram of our FIOS technique is shown in
Figure 2. FIOS consists of two main phases: training and test-
ing. Training is the pre-processing step for streamID detection
which needs to be performed only once. Testing represents the
actual runtime phase of applications, during which streamID
assignment is performed. Training and testing phases are
performed in a cyclic pattern to capture the runtime workload
changes. Here, we use a single cycle of these two phases to
explain how FIOS operates. FIOS first uses blktrace and
blkparse commands to obtain a real I/O block trace from

1https://github.com/benh/disksim/tree/master/ssdmodel

the application platform as a training trace. This trace is then
used by the training phase to extract the required features such
as frequency, adjacent access, sequentiality and coherency.
Later, we describe the details of how each feature is extracted
from an I/O trace in Section II-B.

The captured features are enclosed in form of a feature
matrix, such as the one shown in Figure 3. Accordingly,
the feature matrix consists of n × m cells, where m is the
number of features analyzed for streamID detection and n
is the total number of sector_chunks in the storage volume.
The storage volume may include a single SSD or multiple
SSDs. Each sector_chunk comprises of several sectors. Here,
we set 64 sectors on a disk as one sector_chunk under the
consideration of the storage overhead of streamID computation
and its efficiency. The sector_chunks in rows are arranged in an
incremental numerological order such that the product of row
number and each sector_chunk’s size gives the sector_chunk
address. Each cell in the feature matrix gives data quanta which
reflects the importance of the ith sector_chunk with respect to
the jth feature. Note that if a sector_chunk consists of only a
single block address, then that sector_chunk would be the same
as a logical block address (LBA). Thus, we use sector_chunk
and logical block address interchangeably in this paper.

Through feature extraction, FIOS creates a feature matrix,
which is then used for clustering write/update sector_chunks
into different streams. To obtain high computational effi-
ciency, we improved a multi-threaded K-means clustering
algorithm [5] to cluster sector_chunks into K streams in
parallel. In particular, each feature makes one dimension of
clustering inputs and a relative weight factor can be used
as an optional input to emphasize the relative importance of
each feature in deciding streamIDs. By default, all features
are considered to be equally important with the same weights.
The number of clusters (i.e., K) of K-means algorithm maps
to the number of streams supported by the SSD drive (e.g.,
16 streams in the latest SSD drives). FIOS uses the K-means
algorithm to group all data points in the feature matrix into
the given number of streams. The clustering results are stored
in the LBA-StreamID dictionary that consists of the pairs
of sector_chunks and streamIDs.

In the testing phase, we have actual I/O operations (e.g.,
writes/updates) performed on storage devices. For a read, the
operation of legacy and multi-stream SSDs remains the same.
For a write or a update, a multi-stream SSD allows multiple
append points. Thus, to decide data placement on a multi-
stream SSD, FIOS assigns a streamID to each sector_chunk
through a quick lookup in the LBA-StreamID dictionary.
Thereafter, the assigned streamID is penetrated through the I/O
stack until the data is actually written to the physical address
space of that streamID. For an erase, both legacy and multi-
stream SSDs work in the same way by searching all finalized
blocks for a GC candidate and then copying out valid pages
from the candidate.

B. Feature Extraction

Now, we turn to present how FIOS extracts workload
features from the collected I/O traces and completes a feature
matrix. As introduced above, the feature matrix comprises
of the importance factor for each sector_chunk with respect
to different features. In order to keep low instrumentation



TestingTraining

Training	
Trace

Attribute	
Extraction

Initialize	the	
Clustering	Model

Train	
Model

Eval.	
ModelModel

Relative	Weight	Factor

Dictionary
[LBA	– StreamID]

Dictionary
[LBA	– StreamID]

New	
Data

Feature	
Matrix Lookup

Stream-ID

Feature Extraction K-means Clustering

Fig. 2. Block diagram of our FIOS framework.

Feature_1 Feature_2 Feature_j Feature_m

Sector_chunk_1 0 1 1 0

Sector_chunk_2 1 0 0 0

Sector_chunk_i 0 1 0 .
.
. 1

Sector_chunk_n 1 0 0 1

1
2
.

i
.

n

Fig. 3. Feature matrix data structure.

0

1

2

3

4

5

6

L
B
A

Time Window

Fig. 4. A sampling graph for describing a novel feature of coherency.

overhead, we decide to represent the importance factor for a
sector_chunk as a binary datum. Each entry (i,j) in the feature
matrix can then be represented by a single binary bit (e.g., 1
or 0) that indicates whether jth feature is considered to be
important ("1") or not ("0"). We use a vector

−→
δ , to contain

the thresholds for each feature, as criteria to determine the
values (i.e., 0 or 1) for each entry.

For example, the feature of frequency indicates how of-
ten a particular sector_chunk is accessed. If the number of
accesses of that sector_chunk is greater than the predefined
threshold (e.g., δ[frequency] = 4 times), then the frequency
entry of that particular address is set as 1, otherwise 0. We
set δ[frequency] to the median value of the frequencies of
sector_chunks assuming that the frequencies of sector_chunks
follow a Gaussian distribution. The feature of the adjacent
access indicates that sector_chunks that are adjacently accessed
during a time window are more likely to be accessed together
again. We set δ[adjacent_access] to construct multiple groups
according to the access time of sector_chunks. We can also
have the feature of sequentiality to capture if an incoming I/O
access is sequential to the previous one.

C. Coherency

We found that these existing well known features like
frequency and sequentiality are not sufficient to capture the
lifetime of data when using them individually. We thus propose
a new feature, named Coherency, to capture the friendship
between sector_chunks. Coherency can be more closely related
to the lifetime of data. We refer to two addresses (i.e.,
sector_chunks) as friends if we observe that they are mostly
updated together in multiple time windows. Intuitively, group-
ing coherent addresses in the same stream can be beneficial
because all sector_chunks in that stream will have a similar
update pattern.

Figure 4 illustrates the general idea of the coherency
feature, where the x-axis corresponds to time windows and the

y-axis corresponds to LBAs or sector_chunks. If a particular
group of LBAs that are mostly updated together in multiple
time windows, then these LBAs may be referred to as being
coherent with each other. For example, if we snoop at a specific
time interval which is shown by a vertical dashed line in
Figure 4, we can say that LBA2 and LBA3 are coherent
because they are concurrently updated in three of the four
time windows, i.e., T1, T2 and T4. It indicates that these two
sector_chunks (i.e., LBA2 and LBA3) have a tendency to be
updated at the same time such that grouping them together
into a single stream can help to reduce WAF.

In particular, we maintain lists of unique sector_chunks that
have been accessed in each time window. We compare the list
of each time window to identify the common sector_chunks
that appears in at least two lists. We then mark these common
sector_chunks as coherent (i.e., 1). The process is finished
when all unique sector_chunks of every time window are
allocated their coherency values. In our current model, because
we consider the datum of our feature matrix as either 0 or 1, it
is a limitation that we cannot differentiate different groups of
friends while capturing coherency. As of now, our model only
partitions sector_chuncks into two groups, i.e., one consisting
of LBAs which are "friendly to somebody" and the other
consisting of LBAs which are "friendly to nobody".
D. Combination of Multiple Features

As we discussed, an I/O workload has different features,
such as frequency, coherency, etc. How to use one or mul-
tiple features to cluster data points into the desired number
of streams is not trivial. We found using multiple features
might give better performance than using a single feature.
However, we also found that using unsuitable features to assign
streamIDs may not be able to help improving the performance
and even may cause performance degradation. Thus, a critical
issue is how to find out an optimal combination of features
which can enable FIOS to achieve high quality of streamID
packetization with the minimum overhead. Given n features,
we can have 2n−1 possible combinations. We investigate and
evaluate the impacts of these feature combinations on the write
amplification of multi-stream SSDs in Sec. IV. Investigating
the results for many workloads, we further propose a new ap-
proach to determine a good feature combination in Sec. IV-C.

III.MAIN ARCHITECTURE

In this section, we present the I/O stack architecture
overview of our FIOS implementation and introduce the basic
data structures used in the implementation. Following that, we
discuss the modifications on an existing SSD simulator, i.e.,
Disksim [4] to enable the multi-stream interface.
A. FIOS: Architecture Overview

Our prototype of FIOS can be implemented at any levels,
such as the file system layer on the host side or the FTL layer



Applications/Workloads

re
ad

w
rit

e . . .

st
at

Virtual	Machines

File I/Os

SCI	(System	Call	Interface)

VFS	(Virtual	File	System)

Line	
discipline

Block	I/O

File	Systems

ext4 xfsvmfslvm

Block	device	
driver

I/O	
Scheduler

Virtual	
memory

Page	
cache

m
m

ap

m
al

lo
c

I/O
 m

anagem
ent

subsystem

Dispatcher

hooked in Device DriversPhysical devices

SCSI

/dev/nvme#n#
nvme /dev/mapper

/dev/fio*HDD

. . .. . .PCIe Card
Flash	tier

nvme device
BD (Base Dictionary)

SID (Simplified 
Index Dictionary)

Lookup

R
ed

uc
tio

n M
em

or
y 

m
an

ag
em

en
t

su
bs

ys
te

m

Containers

DRAM

Fig. 5. The I/O stack of FIOS architecture.

inside the device. In our implementation, we choose to deploy
our prototype at the block layer. Later in Section IV-E, we will
discuss the benefits of this design choice. Figure 5 shows the
I/O stack of FIOS architecture, which consists of two main
components to assist in streamID assignment, i.e., (1) Base
Dictionary (BD) and (2) Simplified Index Dictionary (SID). As
shown in Figure 5, BD is persisted in flash memory and SID is
stored within the memory management subsystem in DRAM.
On a system failure like power outage, SID can be rebuilt
from BD on rebooting. At the software level, host applications
may run directly in the system or or containers like Docker
or LxC. The application layer performs read and write I/Os,
which are passed to underlying file system and flash memory
through system calls. For every I/O write or update, a lookup
operation is performed to SID by calling hash_get to get
streamID for the corresponding block addresses. The obtained
streamID is piggybacked on a reserved field of regular and
queued write commands as specified in the ATA command set.
Along with every write operation, the corresponding streamID
is penetrated through all the below layers until that I/O is
written or updated on the SSD.
B. Basic Data Structures

Base Dictionary: The Base Dictionary (BD) is the result of
the training phase (see Figure 2) of our FIOS, which contains
the mapping between streamIDs and sector_chunks. Recall that
there are 64 sectors in one sector_chunk. Each sector_chunk
has a streamID, as metadata associated with it, which is stored
in BD on flash memory. Such a metadata uses 0.5 bytes to keep
the streamID. In our implementation, we consider a logical
volume of flash of a 3TB, which is stripped over the physical
volume of three 1TB SSDs. Thus, for 3TB flash volume, we
require less than 50MB in total to store all streamID metadata,
which is only 0.001% of total flash disk space.

Simplified Index Dictionary: The Simplified Index Dic-
tionary (SID) is used to perform a lookup for streamIDs at run
time (i.e., the testing phase). SID is the compressed version of
BD, where we reduce the size of base dictionary by combining
all consecutive sector_chunks that have the same streamID and
replacing multiple lines with one line. Following that, instead
of sector_chunk number, we have the range of sector chunks
for each row in SID. We can then store SID in DRAM memory
for fast hash_get lookup. We observe that SID is 50% more
efficient in terms of space when compared to BD. Once SID is
created and stored, we can move BD to the back-end storage
until we have a new dictionary from another round of the
training phase. In our experiments, we have 128GB DRAM in
the server. The SID footprint for different workloads consumes

Fig. 6. Modification to garbage collection in order to enable multi-stream.

less than 25MB of main memory. Therefore, the SID footprint
overhead is only about 0.02% of the size of main memory.
C. Multi-stream SSD Architecture

In an SSD, a single flash internal consists of multiple
connected dies through a serial I/O bus and common control
signals. Each die has its own chip enable and ready/busy
signals. Thus, one of the dies can accept commands and data
while the others are carrying out other operations. Furthermore,
a die consists of multiple planes, and each plane is framed
by multiple blocks containing pages where data is actually
stored. Additionally, each plane has some register space to
store data allocation and each block has one page reserved
for metadata. We implement our FIOS in DiskSim’s SSDSim
plugin [4], which has been widely used to simulate SSDs.
However, DiskSim does not support the multi-streaming tech-
nology. Thus, we modified this existing SSD simulator to allow
us simulate multi-stream SSDs and evaluate our new FIOS
method. Later, we discuss our implementation overhead in
Section IV-E.

In particular, we mainly modify two modules, i.e.,
ssd_init and ssd_clean. The ssd_init module is
modified to maintain a streamID attached to the hierarchy of
active_page, active_block and active_plane. We ensure that for
all dies, the total number of active_planes is always equal
to the number of streams. Each active_plane has only one
active_block and each active_block has only one active_page.
Thus, the main difference between a legacy SSD and a multi-
stream SSD is that we have multiple simultaneous open erase
blocks (one for each stream) in the multi-stream SSD, but only
a single open erase block in the legacy SSD.

If all pages in active_block are filled, then
block_alloc_pos takes care of assigning a new block,
which then becomes active_block with the same streamID
as the previous active_block. Blocks are not pre-allocated
to each stream. Instead, they are allocated on-demand to
each stream after the previous one of the same stream is
finalized. In Disksim, the ssd_clean module performs
garbage collection (GC), which is a global component and
not aware of the streams. So, when garbage collection starts,
ssd_clean should search all the blocks to find one or
multiple candidates to clean. But, there are still blocks with
some valid pages whose streamIDs need to be preserved. The
modified ssd_clean module of Disksim thus assigns these
pages to a new physical plane that is ensured to belong to
the preserved streamID. Figure 6 illustrates how the modified
DiskSim works for supporting multi-streaming when garbage
collection happens.

IV.EVALUATION AND FEATURE SELECTION

In this section, we present our experimental results to
demonstrate the effectiveness of multi-stream using our FIOS.



We first study the impact of streamID identification using
different features, such as frequency, sequentiality, on the
WAF of multi-stream SSDs. Then, we analyze characteris-
tics of different workloads and derive some implications for
determining which feature or a combination of features can
obtain the minimum WAF for a given workload. We leverage
these implications to build an analytical model that co-relates
workload characteristics with workload features. Finally, we
validate the FIOS co-relation model to determine the best
features for streamID identification.
A. Experimental Setup

Our evaluation environment of Disksim is calibrated based
on the real testbed specs, summarized in Table I. We adopt
the similar flash volume structure developed in our previous
work [6], which consists of a logical volume of 3TB with
full stripping of 128KB. We configure the parameter file of
DiskSim [4] to support the On-Stack Replacement (OSR) write
policy [7] and the wear-aware garbage collection cleaning
policy [8]. We modify the SSDSim module of DiskSim to
enable simulating operations of multi-stream SSDs.

TABLE I. TESTBED SPECS.
CPU Type Intel(R) Xeon(R)

CPU E5-2640 v3
CPU Speed 2.60 GHz

Number of CPU Cores 32 Hyper-Threaded
CPU Cache Size 20480 KB

CPU Memory 128 GB
OS Type Linux

Kernel Version 4.2.0-37-Generic
Operating System Ubuntu 16.04 LTS

Flash Storage 960 GB
Page Size 8 KB

Pages Per Block 64
Blocks Per Plane 351,562
Planes Per Die 8

Dies Per Element 2
Elements Per Gang 1

Flash Over-Provisioning 11%
Metadata Storage Reservation 1 Page Per Block

We conduct a trace-replay simulation in modified DiskSim
by using 100+ enterprise workloads from University of Mas-
sachusetts (UMass) [9], Microsoft Research - Cambridge
(MSR) [10] and Florida International University (FIU) [11]
trace repositories. We analyze the performance using a wide
variety of workloads with different characteristics. Table II
shows some workload characteristics of the selected work-
loads. Brief descriptions about workload characteristics shown
in Table II are as follows, ACF - the auto-correlation factor
of inter-arrival time between two write/update requests; RW
- the percentage of random writes among the total write I/Os;
R - the reuse ratio of updates to new writes; S - the estimated
average size of each write; WV - the working volume that
represents the spatial capacity demand; λ - the daily logical
write rate (GB/day); Peak rate - the peak throughput demand
with the 5 min statistical analyses window; Throughput - the
overall operation rate.

The primary goal of multi-streaming technology is to
provide better data placement which can reduce the extra
writes during garbage collection. Thus, the major evaluation
metric is Write Amplification Factor (WAF), which is the ratio
of physical writes (in bytes) on device to logical writes (in
bytes) by applications running on host. Lower the WAF, better
the lifetime and performance of the flash device.

B. Impacts of Workload Features

We inspect the impact of streamID identification using
different features on the WAF. The baseline of our comparison
is the WAF of no streaming legacy SSDs with same capacity
and configurations. We also compare the results of our feature
based streamID identification with one straightforward way of
partitioning data into different streams. In this straight forward
way, the total address space of SSDs is equally partitioned into
the number of supported streams and streamID is assigned
according to I/O address. This equal partition (EP) approach
in our work is also the prevailing technique of streamID
assignment in current multi-stream SSDs.

As discussed in Sec. II, our FIOS framework extracts
various workload features and considers different feature com-
binations to cluster logical blocks into streams. Figure 7 shows
the results of relative WAFs normalized by the WAF of no
streaming legacy SSD. The blue horizontal line at 1 represents
the relative WAF of legacy. Thus, the smaller the relative
WAF is, the better the endurance of multi-stream SSDs can be
obtained. Specifically, the first bar in each plot shows the WAF
under EP, which performs streamID assignment by equally
partitioning the available disk space. The remaining 15 bars
represent some possible feature combinations used by FIOS.
For example, FSAC stands for a combination of Frequency,
Sequentiality, Adjacent access and Coherency.

We conduct our experiments with totally 100+ workloads
and summarize our observations with 3 representative work-
loads in Figure 7. In overall, we observe that the multi-
streaming technology offers a good opportunity to reduce
WAF, e.g., at least 20% reduction in WAF for all workloads.
For some write-intensive workloads e.g., Postmark (see Fig-
ure 7a) that have the majority of random writes, the WAF can
be reduced by more than 70%. On the other hand, we also
observe that none of these features can be always the best for
different types of applications. For example, Coherency gives
the best WAF reduction for MSR-hm0 while a combination
of Frequency and Coherency (i.e., FC) is much more better
for MSR-hm1. This is because different workloads have dif-
ferent characteristics. For example, by looking closely to the
workloads we find that both MSR-hm0 and MSR-hm1 have
more random writes and a high auto-correlation (i.e., ACF) of
update time, see Table II. As a result, the feature of coherency
that groups randomly occurred friendly sector_chunks into the
same stream becomes a good choice. Additionally, MSR-hm1
has a high reuse ratio of updates. Thus, combining feature of
frequency can capture the multi-touch reuse count. Moreover,
from Figure 7c, we also find that further adding other features,
such as sequentiality i.e., FSC does not work. This implies that
the combination of more features does not guarantee better
reduction in WAF.

In summary, our results show that (1) none of the fea-
tures (such as frequency, adjacent access, sequentiality and
coherency) can be claimed as the best for all I/O workloads,
(2) different features have varying impacts on WAF, and
(3) the benefit derived by using the combination of multiple
features is not additive. Therefore, a big challenging issue in
developing this multi-stream framework is how to determine
a combination of workload features that is best for assigning
appropriate streamIDs under a given I/O workload.



TABLE II. STATISTICS FOR POSTMARK, IOZONE AND SELECTED FIU, MSR-CAMBRIDGE AND UMASS WORKLOADS. (ACF - AUTO-CORRELATION
OF INTER-ARRIVAL TIME, RW - RANDOM WRITE, R - REUSE RATIO, S - ESTIMATED SIZE OF EACH WRITE, WV - WORKING VOLUME SIZE, λ - WRITE

RATE, BFC - BEST FEATURE COMBINATION)

Workload ACF RW (%) R S (KB) WV (KB) λ (GB/Day) Peak rate (IOPS) Throughput (IOPS)

Postmark 0.99 98.29 37.61 26 10244024 43.87 112.32 18.45

IOzone 0.98 49.45 1.21 197 5094328 28.08 109.53 14.08

FIU-1 0.78 75 157.35 9 1065000000 139.4 271.65 6.6
FIU-2 0.87 82 232.89 8 1084000000 114.72 156.79 1.02
FIU-3 0.97 57 182.04 8 1084000000 185.09 207.02 2

MSR-hm0 0.92 66 4.48 15 28000000 58.51 254.55 9.24
MSR-hm1 0.95 58 157.37 31 51000000 1.57 156.13 6.98
MSR-mds0 0.98 69 32.47 19 67000000 21.04 298.33 23.38
MSR-prn0 0.98 61 4.72 25 132000000 131.33 409.66 17.72
MSR-proj0 1 27 6.27 29 32000000 412.19 484.82 28.95

UMASS-1 0.21 64 1242.93 8 1289000000 575.94 218.59 122.05
UMASS-2 0.02 76 1.13 5 1156000 76.6 159.94 90.25

0
0.2
0.4
0.6
0.8
1

1.2

EP F S A C FS FA FC SA SC AC FS
A

FA
C

FS
C

SA
C

FS
AC

Re
la
tiv
e	
W
AF

Different	techniques	used	for	stream	identification	

Postmark

(a)

0
0.2
0.4
0.6
0.8
1

1.2

EP F S A C FS FA FC SA SC AC FS
A

FA
C

FS
C

SA
C

FS
AC

Re
la
tiv
e	
W
AF

Different	techniques	used	for	stream	identification	

MSR-hm0

(b)

0
0.2
0.4
0.6
0.8
1

1.2

EP F S A C FS FA FC SA SC AC FS
A

FA
C

FS
C

SA
C

FS
AC

Re
la
tiv
e	
W
AF

Different	techniques	used	for	stream	identification	

MSR-hm1

(c)
Fig. 7. Relative write amplification factor (WAF) w.r.t. legacy device for Postmark, IOzone and selected FIU, MSR-Cambridge and UMASS workloads by
using different streamID identification techniques such as Equal Partition (EP), and our framework with dictionary framed from different features and their
combinations. (F - Frequency, S - Sequentiality, A - Adjacent access

C. Our Approach - Automatic Feature Selection

To address the above issue, we build an analytical correla-
tion model to capture the co-relation between easily obtained
workload characteristics, such as I/O size (S), random write
ratio (RW), reuse ratio (R), and autocorrelation (ACF) of write
rates) with high-level workload features (such as frequency and
coherency) and identify a good set (or combination) of features
suitable to a workload for streamID identification. Our goal is
to obtain such a good feature combination automatically, rather
than experimenting all possible combinations.

The initial step in our approach is to determine the work-
load characteristics that can mainly affect the selection of
features. Table III summarizes the implications that we develop
regarding the relationship between workload characteristics
and features used for streamID identification. For example,
as shown in the first row of the Table III, if a workload has
high ACF and high λ, then adjacent access (A) is one of the
good features to select.

TABLE III. SUMMARY OF THE RELATION BETWEEN FEATURES AND
WORKLOAD CHARACTERISTICS. (ACF - AUTO-CORRELATION OF

INTER-ARRIVAL TIME, RW -RANDOM WRITE RATIO, R - REUSE RATIO,
S - ESTIMATED SIZE OF EACH WRITES IN KB, λ - WRITE RATE IN

GB/DAY)

Feature ACF RW R S λ

Adjacent Access (A) High - - - High
Coherency (C) High High - - -
Sequentiality (S) - - - High -
Frequency (F) - - High - -

Based on the information in Table III, we construct a base

ACF RW R S λ

1 0 0 0 1

1 1 0 0 0

0 0 0 1 0

1 0 0 1 0

0 0 1 0 0

1 0 1 0 0

A
C

S

F

Fig. 8. Bit mapping log of base matrix B.

matrix B as shown in Figure 8, where "1" corresponds to
the "High" impact in Table III and "0" corresponds to the
"Low" impact. In B, some features (e.g., sequentiality (S) and
frequency (F)) need to have 2 rows each. For example, no
matter ACF of inter-arrival time is high or low, the feature of
frequency is a good choice as long as the reuse ratio (R) is
high. If we can map a workload’s characteristics to a row in
the base matrix, then we can choose the corresponding feature.
However, we notice that the characteristics of a workload may
not exactly map to one of the 6 possible rows of base matrix
B, and thus it is not straightforward to determine the best
combination of features. Given this, we have the following
problem objective and solution.

Objective: Let us assume a map function fmap which
determines the best possible combination of features (

−→
ψ →

F, T, S, C) based on the workload characteristics (
−→
θ →

ACF,RW,R, S, λ), i.e.,−→
ψ = fmap(

−→
θ ). (1)

Thus, our objective is to determine the above defined function
fmap.

Solution: The attribute vector
−→
θ is constructed based on

users input of workload characteristics, where an attribute is
assigned 1 if the given workload exhibits such a characteristic.



S C
C

AC A F

0

1

2

3

4

5

6

IOzone	 FIU-2	 MSR-mds0 MSR-prn0 MSR-proj0 UMASS-1

W
AF

Workloads
Legacy Equal	Partition Frequency FIOS	Best	Feature

Fig. 9. Write amplification factor using the best feature selected using FIOS
when compared to legacy no streaming, streamID identification with equal
partition and with most prevently used feature of frequency. The best feature
selected by FIOS is mentioned on top of the bar for each workload.

For example, lets consider workload MSR-prn0. After analyz-
ing its workload characteristics, we have its attribute vector−→
θ as [1 1 0 0 1]. It represents that MSR-prn0 has high
ACF , RW and λ, and low R and S.

If the attribute vector
−→
θ given by the user has "0" for a

particular attribute, then any feature that has high impact of
this attribute is definitely not a good candidate. For example,
for the above considered

−→
θ , attributes such as reuse ratio (R)

and I/O size (S) are "0". Thus, the features of sequentiality
and frequency which has high impact of I/O size and reuse
ratio (as seen from Figure 8) are not a good candidates. We
construct the factorization vector −→α that indicates the above
information of whether or not each row in base matrix B is
a good candidate for given

−→
θ . Such a factorization vector −→α

can be represented as below,−→α = [α1, α2, α3, α4, α5, α6]
T , (2)

where αi ∈ {0, 1}. If αi is 0, then the ith row of base matrix
B is not a good candidate and vise-verse. Moreover, as at-least
one of the features must be selected, we have

∑6
i=1 αi > 0.

Thus, we obtain α by following elimination on base (B) with
respect to careful examination of input attribute vector

−→
θ . This

elimination is represented by a "factorization" function ffact
as,

−→α = ffact(
−→
θ ). (3)

Finally, the function fmap can be expressed by some other
function f−1

deriv such that fmap(
−→
θ ) = f−1

deriv(
−→
θ ) ∀

−→
θ and

f−1
deriv(

−→
θ ) gives all possible combinations of the rows of base

B for which elements in −→α is equal to 1, i.e., f−1
deriv(

−→
θ ) =∨6

i=0 (
−→αi × Bi). Then the resultant

−→
ψ gives the optimal feature

combination. For our example of MSR-prn0,
−→
ψ = AC.

D. Validation of Feature Selection

Now, we turn to validate our approach for a given work-
load choosing the best combination of features under various
workloads. We use WAF as the metric to evaluate our FIOS
under six different I/O workloads, as shown in Figure 9. The
best feature combination derived by FIOS are also mentioned
on the top of the FIOS bars in the Figure 9. For comparison,
we plot the results of legacy and multi-stream SSDs under
the equal partition (EP) and the fixed feature (e.g., frequency)
selection approaches. These results show that the existing
methods that use the fixed features (such as frequency) or
equally partitioning the available disk space (such as EP) for
streamID assignment cannot effectively utilize the benefits of
multi-stream SSDs. In contrast, for all these workloads FIOS

0

200

400

600

800

500 1000 2000 3000

Ti
m
e	
(s
ec
on
ds
)	

Number	of	LBAs	(millions)

Fig. 10. Average time for streamID identification by FIOS using four features
(frequency, adjacent access, sequentiality and coherency) as a function of the
number of blocks in the workload.
is able to obtain the lowest WAF by using appropriate features
for streamID assignment.

E. Discussion

Implementation Layer: The identification of streamIDs
can be done at any layers, such as the application layer, the
file system layer, the block layer or the FTL layer. Stream
identification at the application layer is to let applications be
responsible to identify different streams (for e.g., commit logs,
metadata, indices, etc.) in their workloads. However, when
multiple applications are involved in a virtualized environment,
stream management becomes more complex. Another option
is to perform stream identification at the file system layer
that appends each file with a corresponding streamID. This
is portable to different applications without modifying them.
But, this approach sometimes does not work when some
applications bypass the file system to speed up data access.
On the other hand, streamID identification at the FTL layer is
limited by the computing and buffering capability of an SSD
that is comparatively slower and smaller when compared to
the computing speed and buffering capability of the host (i.e.,
CPU and main memory). We find that the block layer imple-
mentation can avoid the above issues, i.e., being portable to
different applications and multi-tenant environments and being
able to utilize the host resources for stream management. Thus,
we choose to implement our stream identification framework
at the block layer in this paper.

Implementation Overhead: We use base dictionary (BD)
and simplified index dictionary (SID), as described in Sec-
tion III, to maintain additional data of our framework. For a
3TB flash volume SSD storage, we require less than 50MB in
total to store all streamID metadata, which is only 0.001% of
the total flash disk space. In our experiments, we have 128GB
DRAM in our server. The SID footprint for different workloads
consumes less than 25MB of main memory. Therefore, the SID
footprint overhead is only about 0.02% of the size of main
memory. We mainly modified two modules, i.e., ssd_init
and ssd_clean in DiskSim. In order to pertain the modifi-
cation through out, we had to make subsequent changes in
the ssd_timing, ssd_gang and ssd_utils modules.
In total, we modified approximately 560 lines of codes to
enable the operation of a general multi-stream SSD excludeing
streamID identification.

The streamID identification time under FIOS is considered
as the total additional operation time, including the time re-
quired for feature extraction, K-means clustering, construction
of base dictionary (BD) and simplified index dictionary (SID),
and queries of streamID to SID. Figure 10 shows the average
time for streamID identification by FIOS using four features
(i.e., frequency, adjacent access, sequentiality and coherency)



with respect to number of blocks in the workload. We can
see that FIOS does add extra latency in order to identify the
best feature combinations for improving SSD endurance. With
an increase in dataset size (i.e., number of blocks), the time
to identify and maintain streamIDs increases as well. In our
experiment, a 3TB SSD was required to run a workload with
3 billions LBAs (blocks). Thus, we believe it is acceptable for
FIOS to take around 600s for streamID identification. Finally,
we note that there exists a trade-off between time efficiency
and endurance improvement. Since a multi-stream SSD is
developed to enhance the lifetime of SSDs, we believe that the
main goal of a streamID identification algorithm should be to
reduce write amplifications with the minimal time overhead.

V. RELATED WORK

The evolution of flash has raised the research on SSDs
as a hot topic in recent years. Because of high performance
(compared to HDDs) and low cost (compared to RAM), SSDs
were initially used as a buffer pool to cache data between
RAM and hard disk [12], [13]. As the $/GB of flash drives
kept decreasing, SSDs have been emerged as main storage [6],
[14]–[16]. Nowadays, the use of SSDs in enterprise servers
and data centers becomes more prominent [17]. One of the
major issue of the flash technology is the limited lifetime of
flash cells due to limited program and erase (PE) cycles. The
work in [4] observed that SSD’s performance and lifetime is
highly sensitive to I/O workloads. The previous work in [18]
designed new file systems, specifically for enhancing lifetime
of the SSDs. These file systems concentrated on transforming
all random writes at the file system level to sequential ones at
the SSD level and considered a new data grouping strategy on
writing by putting data blocks with similar update likelihood
into the same segment. It was noticed that the reduction
of the internal write amplification of SSDs may increase
the lifetime of SSDs. The recent technology evolves a new
product of multi-stream SSDs, which offers an intuitive storage
interface to inform host system about the expected lifetime
of the data [3]. The work in [19], [20] did modification
in certain applications (i.e., FIO, Cassandra and RocksDB)
to enable application assigned streamID. The study shows
that with multi-streaming, SSDs can be more efficiently used
for achieving consistently better performance and endurance.
Recently, in [21] the authors proposes two automatic stream
management algorithms that operate on temperature of data
with respect to frequency and recency. To the best of our
knowledge, there exists no framework or efforts to analyze
the impact of stream identification for various I/O workloads
using different data features (such as frequency, sequentiality)
on the write amplification of multi-stream SSD.

VI.CONCLUSION

In this paper, we built a framework to investigate the impact
of streamID assignment using different workload features on
write amplification of multi-stream SSDs. FIOS is scalable to
incorporate any number of features. Our experimental results
show that compared to a legacy SSD, a multi-stream SSD is
able to reduce WAF, and thus improve the device endurance
and lifetime. We also found that different features have varying
impacts on WAF of different workloads. Additionally, in
order to better capture data lifetime, we proposed a new
feature, called coherency, to capture the friendship between
write operations with respect to their update time. We further
investigated the correlation between workload attributes and

workload features to automatically determine a combination
of features that can offer the most WAF reduction. In the
future, we plan to expand our stream identification technique
with more workload features and develop a tool to analyze
workload characteristics.

REFERENCES

[1] J. S. Bhimani, J. Yang, C. Choi, and J. Huo, “Smart I/O stream detection
based on multiple attributes,” Mar. 16 2017, uS Patent App. 15/344,422.

[2] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The multi-streamed solid-
state drive.” in HotStorage, 2014.

[3] “Multi-Stream Technology,” http://www.samsung.com/semiconductor/
insights/article/25465/multistream.

[4] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design Tradeoffs for SSD Performance,” in USENIX
Annual Technical Conference, 2008, pp. 57–70.

[5] J. Bhimani, M. Leeser, and N. Mi, “Accelerating K-Means clustering
with parallel implementations and GPU computing,” in HPEC’IEEE.

[6] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pan-
durangan, and V. Balakrishnan, “Understanding performance of I/O
intensive containerized applications for NVMe SSDs,” in Performance
Computing and Communications Conference (IPCCC), 2016 IEEE 35th
International. IEEE, 2016, pp. 1–8.

[7] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improv-
ing NAND flash memory lifetime with write-hotness aware retention
management,” in 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2015, pp. 1–14.

[8] A. V. Kuzmin and J. G. Wayda, “Multi-array operation support and re-
lated devices, systems and software,” Jan. 5 2016, uS Patent 9,229,854.

[9] UMass Trace Repository, (accessed January 13, 2017). [Online].
Available: http://traces.cs.umass.edu

[10] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-Loading:
Practical Power Management for Enterprise Storage,” ACM Transac-
tions on Storage, vol. 4, no. 3, pp. 10:1–10:23, 2008.

[11] SNIA Iotta Repository, (accessed January 13, 2017). [Online].
Available: http://iotta.snia.org/historical_section

[12] L.-P. Chang, “Hybrid Solid-State Disks: combining heterogeneous
NAND flash in large SSDs,” in Design Automation Conference, 2008.
ASPDAC 2008. Asia and South Pacific. IEEE, 2008, pp. 428–433.

[13] H. Jo, Y. Kwon, H. Kim, E. Seo, J. Lee, and S. Maeng, “SSD-
HDD-hybrid virtual disk in consolidated environments,” in European
Conference on Parallel Processing. Springer, 2009, pp. 375–384.

[14] P.-L. Wu, Y.-H. Chang, and T.-W. Kuo, “A file-system-aware FTL
design for flash-memory storage systems,” in Proceedings of the Con-
ference on Design, Automation and Test in Europe. European Design
and Automation Association, 2009, pp. 393–398.

[15] R. Chin and G. Wu, “Non-volatile memory data storage system with
reliability management,” May 25 2009, uS Patent App. 12/471,430.

[16] Z. Yang, J. Tai, J. Bhimani, J. Wang, N. Mi, and B. Sheng, “GREM:
Dynamic SSD Resource Allocation In Virtualized Storage Systems With
Heterogeneous IO Workloads,” in 35th IEEE International Performance
Computing and Communications Conference (IPCCC). IEEE, 2016.

[17] Y. Wang, K. Goda, M. Nakano, and M. Kitsuregawa, “Early experience
and evaluation of file systems on SSD with database applications,”
in Networking, Architecture and Storage (NAS), 2010 IEEE Fifth
International Conference on. IEEE, 2010, pp. 467–476.

[18] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “SFS: random
write considered harmful in solid state drives,” in FAST, 2012, p. 12.

[19] C. Choi, “Multi-Stream Write SSD: Increasing SSD Performance and
Lifetime with Multi-Stream Write Technology,” Flash Memory Summit
2016 Santa Clara, CA, http://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2016/20160809_FC12_Choi.pdf.

[20] F. Yang, K. Dou, S. Chen, J.-U. Kang, and S. Cho, “Multi-streaming
RocksDB,” in Non-Volatile Memories Workshop, 2015.

[21] J. Yang, R. Pandurangan, C. Choi, and V. Balakrishnan, “AutoStream:
automatic stream management for multi-streamed SSDs,” in 10th ACM
SYSTOR. ACM, 2017, p. 3.


