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Abstract—Predicting performance of an application running
on high performance computing (HPC) platforms in a cloud
environment is increasingly becoming important because of its
influence on development time and resource management. How-
ever, predicting the performance with respect to parallel processes
is complex for iterative, multi-stage applications. This research
proposes a performance approximation approach FiM to model
the computing performance of iterative, multi-stage applications
running on a master-compute framework. FiM consists of two
key components that are coupled with each other: 1) Stochastic
Markov Model to capture non-deterministic runtime that often
depends on parallel resources, e.g., number of processes. 2)
Machine Learning Model that extrapolates the parameters for
calibrating our Markov model when we have changes in applica-
tion parameters such as dataset. Our new modeling approach
considers different design choices along multiple dimensions,
namely (i) process level parallelism, (ii) distribution of cores
on multi-core processors in cloud computing, (iii) application
related parameters, and (iv) characteristics of datasets. The major
contribution of our prediction approach is that FiM is able to
provide an accurate prediction of parallel computation time for
the datasets which have much larger size than that of the training
datasets. Such calculation prediction provides data analysts a
useful insight of optimal configuration of parallel resources (e.g.,
number of processes and number of cores) and also helps system
designers to investigate the impact of changes in application
parameters on system performance.

Keywords—Performance Modeling, Markov Model, Regression,
Distributed Systems, Cloud Computing, Big Data Infrastructure

I. INTRODUCTION

High Performance Computing (HPC) services in cloud are
ubiquitous in processing scientific applications involving huge
datasets. How to achieve the best performance with an optimal
configuration of parallel resources (e.g., number of processes
and number of cores) is a challenging research problem.
Currently, researchers run their application codes on a typical
dataset, fix application parameters, and try different configura-
tions of parallel resources to determine the optimal one. How-
ever, if we further want to find optimal application parameters,
then the investigation needs to consider all possible combina-
tions of application parameters and parallel resources. Such an
investigation in a cloud environment becomes very expensive,
requiring a large amount of time and hardware resources.
In addition, in HPC, using more parallel resources does not
always guarantee performance improvement. Hence, it could
be beneficial if we can approximate the optimal performance
point in terms of parallel resources, application parameters,
and datasets. The prediction of expected performance prior to
the porting of an actual implementation on a cloud platform
can save time and resources spent in experimentally finding
the optimal performance point.
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Fig. 1: Latency variation across different number of parallel pro-
cesses for calculation time

As a motivation, we plot an example with an iterative K-
means clustering application running on a “master-compute”
(also called “master-worker”) framework using Message Pass-
ing Protocol (MPI [1], [2]) in Figure 1. We observe that the
calculation time considerably decreases when we have more
parallel MPI processes until 70 parallel processes. This implies
that increasing the number of parallel processes after 70 only
consumes more resources, but does not decrease the overall
application runtime. Thus, the capability of predicting such
an optimal point (e.g., 70 in Figure 1) is important to system
designers for making good design choices. More specifically,
this paper aims to answer the following questions through our
prediction models.
• Can we quickly estimate the parallel calculation of

an application to identify the optimal number of
processes?

• Can we use small datasets as training to predict
performance of applications operating in parallel on
large datasets?

• How does the distribution of parallel cores impact the
optimal number of processes?

To answer these questions, we introduce FiM which consists
of two main components: (1) Stochastic Markov Model, and
(2) Machine Learning Model. The Stochastic Markov Model is
built using the probabilistic technique to estimate the impact of
increase in the number of parallel processes. We first develop
the base case of the considered parallel paradigm and then
derive a generic model that is applicable to any number of
parallel processes as well as any number of dependent stages
(e.g., iterations) of an application. The base case of the Markov
model is calibrated by using the minimum number of system
parameters. The Machine Learning Model is then designed
to extrapolate the calibrated parameters for the Stochastic
Markov model in order to adapt to the changes in application
parameters such as datasets. Thus, our FiM approach can
use the minimum possible calibration parameters to accurately
estimate the computation time as well as the optimal number
of processes. While comparing actual and predicted compute
time, the worst prediction error of FiM is less than 40%. One
of the key innovations in our work is that FiM relies only on
small datasets for training but can estimate the execution times



Fig. 2: Prediction procedure of FiM

for larger datasets.
The remainder of this paper is organized as follows. We

present the two FiM components in Section II. In Section III,
we evaluate our model on a distributed memory platform. We
discuss some related work in Section IV and summarize our
conclusions and future plan in Section V.

II. FIM: CALCULATION PREDICTION
In this section, we present FiM , an analytical approach

to predicting the calculation time of an application running
on a distributed multi-process platform. FiM consists of
two key components, i.e., a stochastic Markov model and a
machine learning model. Generally, we first use the stochastic
Markov model to represent the computational processing of an
application in a parallel master-compute framework. Then, we
design a machine learning algorithm to estimate the parameters
related to the system for calibrating our stochastic Markov
model. This parameter extrapolation thus enables our model
to predict an application’s calculation time when we have
different number of parallel processes or variable application
parameters (such as dataset size) without any system state
instrumentation. Table I lists the notations that are used in this
paper. Figure 2 shows the overall work flow of our proposed
FiM. We will introduce the details of each component in
Figure 2 in the remaining part of this section.

TABLE I: Notations used in FiM
Notation Description

Si
j Markov chain state with i active and j passive processes

Psi Stage completion probability of ith stage
Pij State transition probability of moving from i active

to j active processes
Pact Probability P 11 of 1 process model
Pp2a Probability P 01 of 1 process model
Pa2p Probability P 10 of 1 process model
Ppass Probability P 00 of 1 process model
F Frequency (GHz)
TC Total cycles
SC Total stall cycles
U Utilization fraction per process
Ti Total time taken by stage i
α Sensitivity constant
β Regression constant
yi Dependent variables
~Xi Vector of independent variables

A. System Description
We model the parallel computation in iterative, multi-stage

data processing applications, running on a master-compute
framework as shown in Figure 3. Each compute node is a CPU
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Fig. 3: High Level Architecture of HPC on Cloud

which has multiple cores and each core can support multiple
MPI processes. One of the nodes is declared as the master
to handle the processing control. The remaining nodes are all
compute nodes which perform parallel computations. The mas-
ter node accesses an application and its dataset to determine the
distribution of its processing among the processes of compute
nodes. These processes on compute nodes operate in parallel
to calculate their local mean values. Such a parallel phase is
known as one stage in our model. At the end of each stage,
the master node gathers the results from each process and
broadcasts the new task to each process on compute nodes for
the next stage. In this research, we concentrate on predicting
parallel computation time of such an iterative and multi-stage
application running in a master-compute platform with global
synchronizations.
B. Stochastic Markov Model

Our stochastic Markov model is designed to model a com-
putational processing for an application running on a system
with parallel multi-core CPUs deployed using MPI. Such a
stochastic model allows us to capture non-deterministic run-
time that often depends on parallel resources, e.g., number of
processes. In real systems, due to the global synchronization,
all processes wait until each process has completed its own
work. So, each stage is modelled to represent a parallel phase
until all processes have completed their tasks and are in an
active state to proceed to the next stage. The processing of an
application is partitioned into multiple stages with respect to
its global synchronization, such that each stage corresponds to
a parallel phase. In this section, we first introduce our base
case which models a single stage for a single-process system
and then show its extension to the generic case with multiple
processes and multiple stages.

1) Base Case: The base case model is built to represent a
single process for a single stage application, see Figure 4 (a).
In our model, each process is considered to be either in active
state or passive state. As shown in Figure 4(a), when only a
single process runs in the computing platform, we have two
states for a stage such that state S1

0 represents that one process
is active while S0

1 represents that one process is passive. We
also introduce transition probabilities (e.g., Pact, Pa2p, Ppass,
Pp2a) of switching between two states or staying in the same
state, as well as the stage completion probability (Ps1) of
transferring from one stage to another. In the active state,
the process performs constructive work and typically changes
from the active state to the passive state when it is blocked
by an event that would create a latency stall. Such a latency
stall might be caused due to a cache miss that takes many
CPU cycles. In this work, we do not model memory latencies,
contentions, interdependencies and deadlocks individually for
each process but alternatively treat the combined effect as a



Fig. 4: Modeling (a) Base Case: single process with single stage, (b) Generic Case: two processes with multiple stages

process remaining passive.
The probabilities in the base case model are parameterized by

instrumenting the system details, which will further be used to
derive the probabilities of the generic case. In order to param-
eterize the probabilities of base case, we use perf tool [3]
to instrument the required data, including the hardware clock
rate (F ), system CPU utilization factor per process (U ), total
number of cycles required for execution (TC) and stall cycles
(SC). In particular, we run an application with a single stage
on a single process and use the perf stat command to collect
and report the required data as listed above.

In the base case (i.e., single-process and single-stage), the
probability to remain in the active state (Pact) is primarily
determined by the proportion of time that constructive work
is being performed by the process. Therefore, we use Eq. 1 to
get Pact,

Pact = U (1)

where U is utilization per process. As shown in Figure 4 (a),
when the process is in an active state (i.e., S1

0 ), there are three
possible events for its next transition: (1) remain in S1

0 with
probability Pact, (2) transition to S0

1 with probability Pa2p,
and (3) complete the stage with probability Ps1. Now, if there
are TC total cycles to be processed for the given dataset, then
processing is completed only after completing the last cycle.
This gives the probability of completion as 1/TC. Probability
Pa2p for the process to transit to the passive state can then be
calculated as shown in Eq. 2.

Pa2p = 1− (Pact)− (1/TC) (2)

The probability of the process remaining passive (Ppass) is
primarily determined by the ratio of stall cycles (SC) to total
cycles (TC) as shown in Eq. 3.

Ppass = SC/TC (3)

We can determine the probability of switching from passive
to active (Pp2a) by applying the control flow equation to the
passive state (S0

1 ) as shown in Eq. 4.
Pp2a = 1− (Ppass) (4)

We finally get the stage completion probability (Ps1) by
applying the control flow equation to the active state (S1

0 ) as
shown in Eq. 5.

Ps1 = 1− (Pact)− (Pa2p) (5)

Note that, for the base case with one stage and only one
possible active phase, Ps1 is the same as 1/TC because all

active cycles can be spent only in one active state (S1
0 ). Later,

in generic cases, we will discuss the calculation of Ps1, which
is then not the same as 1/TC.

2) Generic Cases: Now, we consider generic cases where
we can have multiple processes operating on an application
with multiple stages. This generic behavior can be modeled
as an extension of the base case. The processing of an
application may have multiple inter-dependent parallel stages.
For example, an iterative application with 500 iterations can be
divided into 500 parallel stages such that each stage represents
an iteration and is entered only after the completion of all
prior stages. Thus, the first stage corresponds to the parallel
calculation phase by all processes in the first iteration and is
followed by the remaining stages in the same order.

Figure 4 (b) shows an underlying Markov model for an
application with two processes using n multiple stages. Thus,
in a similar way, the entire work flow of an iterative, multi-
stage, multi-process application can be mapped with a chain
of n parallel stages, and Ps1, Ps2,..., Psn, are the completion
probabilities for all n stages, see Figure 4 (b). Note that these
stage completion probabilities are non-uniform and dependent
on all the completion probabilities of prior stages as well as
intra-state transition probabilities of that stage. Also for every
stage, all its state transition probabilities (Pij) depend on the
completion probability of the prior stage. Thus, the value of Pij

in a stage is different from that of Pij in another stage even for
the same i and j. Furthermore, a single stage can only complete
when all of its processes are active, i.e., not being blocked by
any events. A calculation phase of an application is completed
when tasks assigned to all processes are completed in the last
stage. Thus, the completion probability of an application is
Psn.

To model an iterative, multi-stage paradigm with multiple
processes, we use multiple states within each stage to represent
activities (active or passive) of all processes. Consider t
processes with i active processes and j passive processes,
where 0 <= i <= t, 0 <= j <= t and t = i + j. Each
stage consists of a total of M = t + 1 states. Thus, the
transition probabilities of jumping from any one of these M
states to other states or itself can be divided into 3 types: 1)
probability to remain in the same state (e.g., P22, P11 and P00

in Figure 4 (b)), 2) probability to increase active processes
(e.g., P01, P12, P02 in Figure 4 (b)), and 3) probability to
increase passive processes (P10, P21, P20 in Figure 4 (b)).
Given M states, we have M probabilities to remain in the



same state,
∑M−1

i=1 i probabilities to increase active processes,
and

∑M−1
i=1 i probabilities to increase passive processes. Thus,

the total number of probabilities to be calculated for a single
stage with M states is equal to M+ 2

∑M−1
i=1 i.

3) Solving the Generic Model: We solve such a generic
Markov model and derive its probabilities by relating them to
the preliminary transition probabilities of the base case. That is,
once we have transition probabilities for M = 2 (base case), we
can calculate all probabilities for a generic case with M > 2.
In [4], a mathematical relation between transition probabilities
of a Markov model with two states and a Markov model with
more than two states has been derived. We use their method
to relate transition probabilities of the cases with M = 2 and
M > 2.

Eq.s 6 - 8 give the state transition probabilities for M >
2, where i corresponds to the number of active processes in
the previous state and j corresponds to the number of active
processes in the targeted state. For example, in Figure 4 (b),
P21 indicates the state transition probability of moving from
a state with 2 active processes (S2

0 ) to a state with 1 active
process (S1

1 ). These equations represent the stochastic process
of a Markov chain and can be calculated by mathematical
induction after solving the Markov chain with a finite number
of states. Particularly, as shown in Eq.s 6 - 8, we use the
probabilities (Pact, Pa2p, Ppass and Pp2a) that are obtained
by the base case (Sec. II-B1) to calculate the state transition
probabilities in generic cases.

Pii =

x+y<=t−i,
x>=0,
y<=i∑
x=t−i,

y=t−i−x,
x−−,
y++

(
i

y

)
.

(
t− i
x

)
.(P i−y

act ).(P y
a2p).

(P x
pass).(P

t−i−x
p2a )

(6)

Pij(i < j) =

x+y<=t−i,
x>=0,
y<=t−j∑
x=t−j,
y=0,
x−−,
y++

(
i

y

)
.

(
t− i
x

)
.(P i−y

act ).(P y
a2p).

(P x
pass).(P

t−i−x
p2a )

(7)

Pij(i > j) =

x+y<=t−j,
x>=0,
y<=t∑
x=t−i,
y=i−j,
x−−,
y++

(
i

y

)
.

(
t− i
x

)
.(P i−y

act ).(P y
a2p).

(P x
pass).(P

t−i−x
p2a )

(8)

Additionally, after capturing the state transition probabilities
of the first stage, we calculate the stage completion probability
Ps1 using Eq. 9 and then use Ps1 as an incoming probability
for calculating the state transition probabilities of stage 2, and
so on. This chain process captures an iterative and multi-stage
application running with multiple processes. Finally, Psn for
the nth stage is calculated by Eq. 9, where Z represents a
random variable over stages.

Psn = P (Zs = n | Zs−1 = n− 1)

= 1−
j=i∑
j=0

(Pij | Zs−1 = n− 1)

for i =Max(#Processes)

(9)

We further use Eq. 10 to calculate the time (Tn) spent
in performing parallel calculation for n stages, given the

completion probability (Psn) and CPU frequency (F ).

Tn =
1

(Psn).(F )
(10)

Consequently, our stochastic Markov model can predict the
computation time required to process any particular dataset
using different levels of parallelism such as different number
of processes in MPI. Next, we present our machine learning
technique which assists to extrapolate the data (such as, F , U ,
TC and SC) required for calibrating the base case model.
C. Machine Learning Model

Our stochastic Markov model allows us to predict the calcu-
lation time of an application when we have different number
of processes in the system. However, the required hardware
parameters (i.e., TC, SC, U ) need to be instrumented for
every new dataset and a new setting of application parameters.
This limits the scope of the model to predict for a particular
set of datasets and fixed application parameters. Most ana-
lytical models suffer from this lack of flexibility. Therefore,
we develop our machine learning model to avoid additional
instrumentation for a new dataset or a new set of application
parameters. To reduce the complexity of the machine learning
model, we also assume that the application execution time
is dependent on the fewest possible hardware parameters.
Our evaluation results shown in Section III demonstrate the
feasibility of this assumption by showing the fairly accurate
predicted results obtained by our approach which is good
to give a quick approximation. Here, we introduce a two-
stage machine learning model that emulates hardware behav-
iors without performing actual instrumentation for required
hardware-related data. Such an encapsulated emulation of
hardware is the key for allowing the approach to be able to
predict parameters for datasets with sizes much larger than
those of the training datasets.

1) Regression Mapping: The focus of regression is to find the
relationship between a dependent variable (such as the hard-
ware parameters which we want to emulate) and one or more
independent variables (such as application parameters and
datasets). This analysis estimates the conditional expectation
of a dependent variable given values of all related independent
variables. We find that the generalized linear regression model
performs the best when compared to others (quadratic, Poisson
model, gradient decent, etc.) for modeling all desired hardware
parameters (U , TC and SC). We will show the validation
of linear regression model in Sec.III-C. The linear regression
equation for learning variable yi is shown in Eq. 11, where ~Xi

is a vector of p independent variables related to application
parameters and datasets, ~βi consists of a vector of p + 1
constants, and n is total number of scalar dependent variables.
Suppose for the K-means application, elements of ~Xi would
consist of number of desired clusters (K), number of iterations
(I) and size (N). For our model, we have three scalar dependent
variables i.e., U , TC and SC, which can be predicted after
building this linear regression model. Thus, we have three
equations for y1, y2 and y3 with n = 3.

yi = βi0 + βi1xi1 + ...+ βipxip

= ~βi(1 + ~Xi
T
), for i = 1, 2, ..., n

(11)

This linear regression model is used to find values for constants
~βi using the training data for which both dependent variables
and independent variables are known. We obtain the regression
curve and regression constants ~βi by building our machine



learning model in MATLAB.
2) Iterative Improvement Model: However, we found non-

negligible errors between the actual and predicted calculation
times when we pair the linear regression model described
above with our stochastic Markov model, to predict execution
time of large datasets based on small training datasets. In
order to handle this issue, we develop an iterative improvement
model which uses a sensitivity parameter α to tune the constant
factors ~βi with respect to the predicted results (i.e., exeution
time) of our stochastic Markov model as shown in Eq. 12. Note
that in this equation the constants in vector ~βi are obtained
from regression between hardware parameters and application
parameters, but constant α is obtained by using both Markov
model and regression model as described in Algorithm 1.

yi = α(βi0 + βi1xi1 + ...+ βipxip)

for i = 1, 2, ..., n
(12)

Initially, we use hardware parameters (U , TC and SC) and
application parameters of training data with regression map-
ping (Eq. 11) to obtain constants of vector ~βi. The hardware
parameters are passed to our stochastic Markov model to
predict execution time. In the first iteration, the absolute error
between actual and predicted time is used to decide the adjust
direction of α, see lines 6 to 8. That is, if actual value is greater
than the predicted one, then the algorithm plans to increase
α and vice verse. In the following iterations, Algorithm 1
increases or decreases α by a small value ε (e.g., ε = 1e-5)
and the hardware parameters (U , TC and SC) are predicted
using constants of vector ~βi and α with Eq. 12 (see line 14).
Then the computation time is predicted using U , TC and SC
as the inputs to our stochastic Markov model (see line 4). The
adjustment process continues until the root mean square (RMS)
error becomes smaller than a predefined threshold (e.g., τ =
0.01), see line 9. Thus, the algorithm adjusts the value of α
until the predicted execution time becomes close to the actual
one. Note that our machine learning model is used to calculate
the constants of vector ~βi and α in the training phase, which
are thereafter used for extrapolation of hardware parameters.

Algorithm 1: Calibration of α

1 Input: ε, τ yi, ~Xi, Output: α
2 Initialize: ~βi, TC, SC, U using regression mapping, α = 0

and iter = 0
3 if 0 <= U <= 1, TC >0, SC >0, SC <TC then
4 Predict comp. time using stochastic Markov model
5 Calculate RMS error (Actual, Predicted)
6 if iter == 0 then
7 Calculate absolute error (Actual, Predicted)
8 Decide OP = + or -, depending on positive or

negative absolute error
9 if RMS error <τ then

10 return
11 else
12 α = α {OP} ε
13 iter ++
14 Calculated TC, SC and U using Eq. 12
15 goto line 3
16 else
17 Neglect bad values
18 goto line 4

In summary, Figure 2 shows the overall procedure of our

prediction model FiM , which includes the training and pre-
diction phases. In the prediction phase, our machine learning
model extrapolates the dependent variables (such as hardware
parameters - SC, TC, U ) for new datasets and new sets of
application parameters. These predicted hardware details can
then be used as an input to our stochastic Markov model to
predict the calculation time.

III. EVALUATION

We built a distributed cluster using MPI installed HPC nodes
as shown in Figure 3. We evaluate our FiM prediction approach
(a combination of stochastic Markov modeling and machine
learning regression), by comparing the predicted results (e.g.,
parallel calculation time) with actual experimental measure-
ments on a real distributed platform. We also compare our
prediction approach with an existing work, named RBASP [5],
which is a regression-based approach to extrapolate execution
time. We use Discovery Cluster at Northeastern University [6]
to build our experimental platform. Table II gives a description
of five parallel platform configurations we used in our evalu-
ation, where each CPU belongs to different compute nodes.

We evaluate our approach with six different NAS Parallel
Benchmarks (NPB - version NPB3.3.1-MPI) [7], with the large
size dataset of Problem Class C. The benchmarks, Block Tri-
diagonal solver (BT) and Embarrassingly Parallel (EP) are
compute bound, Scalar Penta-diagonal solver (SP) and Lower-
Upper Gauss-Seidel solver (LU) are I/O bound, and Integer
Sort (IS) and Conjugate Gradient (CG) are memory bound.
For each benchmark, we train our model using three small
size datasets of Problem Class S. Note that we use the trained
model to predict the datasets of Problem Class C which
are much larger than the datasets of Problem Class S. We
reprogram the NPB benchmarks to implement its iterative or
multi-stage, master-compute paradigm version in MPI using C.
The time spent for computation in all iterations (or multiple
phases) is the total computation time. For each iteration,
we measure the time from the start of parallel processes to
the completion of all the processes. We also evaluate FiM
with two iterative data processing applications: K-means [8]
and Pagerank. For each of these two applications, we run
experiments on 15 different datasets and choose one dataset as
representative to show the results, i.e., NL (the large dataset
with 13 million data points). For both applications, we train our
model using three small datasets, i.e., NS (the small datasets
each with 3 thousand data points).

TABLE II: Platform Configurations (2-E52670 - Two Multi-Core,
Hyper-Threaded Intel Xeon E5 2670 CPU’s @ 2.60 GHz and 256
GByte of RAM) (2-E52650 - Two Multi-Core, Hyper-Threaded Intel
Xeon E5 2650 CPUs @ 2.00 GHz and 128 GByte of RAM)

C1 C2 C3 C4 C5
CPU 2-E52670 2-E52670 2-E52670 2-E52670 2-E52670

2-E52650 4-E52650 6-E52650 8-E52650
Cores 32 64 96 128 160

Network 10 Gb/s Ethernet backplane TCP/IP
Shared FS NFS

OS Linux

K-means Clustering (KM): Our K-means clustering imple-
mentation [8] takes color images as input datasets. We cluster
pixels in an image based on five features, including three RGB
channels and the position (x, y) of each pixel. The parameters
of K-means include number of desired clusters (K), number



Fig. 5: Actual and predicted execution time using FiM and RBASP with the relative prediction error listed on top of each bar

of iterations (I), and size of input dataset (N ). Pagerank
(PR): The Pagerank application takes a network of directed
vertexes and edges as an input dataset. The output of the
Pagerank application is a probability distribution representing
the weights of each vertex (page). The parameters of this ap-
plication include number of vertexes (V ), number of iterations
(I), size of input dataset (N ) and network nature (dense or
sparse).
A. Performance Evaluation

In our evaluation, we consider a regression-based approach
named RBASP [5] to compare with our FiM approach. We
choose RBASP because it is well known for its simplicity
and accuracy in extrapolating execution time of multi-process
applications. In our FiM approach, we combine the stochastic
Markov modeling with the machine learning regression to
reduce prediction error in the most cases. The RBASP model
predicts the execution time (y) of a given parallel application
on p processes by using several instrumented runs of an
application on q processes, where q ∈ {1, ..., p0} and p0 < p.
By varying the values of independent variables (x1, x2, ..., xn),
this model aims to calculate coefficients (β0, ..., βn) by the
linear regression fit for log2(y) (Eq. 13), where g(q) can be
either a linear function or a quadratic function.

log2(y) = β0 + β1x1 + ...+ βnxn + g(q) (13)

While reproducing the RBASP model, we use p0 = 1, 2, 4
as the training set and predict the performance with two forms
of g(q) function as suggested in [5]. The RBASP approach
directly predicts the execution time using regression, which
requires to perform training with data points processed for
different number of multiple processes. But, FiM extrapolates
the hardware parameters for a given computing platform and
then uses these hardware parameters as the inputs to the
stochastic Markov model for predicting execution time for
different number of processes. That is, FiM does not required
to be trained again when we change the number of processes
in that given computing platform.

Figure 5 shows the predicted results using RBASP and FiM
for six NPB benchmarks and two iterative data processing
applications. We run these experiments on the C5 platform
(see its configuration in Table II), using the actual optimal
number of processes listed in Table III. As shown in Figure 5,
our FiM approach achieves a pretty good agreement between
the predicted and actual results across all the six benchmarks
and two applications. We also observe that RBASP has lower
relative prediction error than FiM for only BT and KM. For
all the remaining benchmarks and applications, FiM performs
better with the prediction error less than 20%. Furthermore, we
find that RBASP’s prediction is limited to the fixed application
parameters on which the model is trained, while FiM can

predict execution time without any prior training for new
application parameters.

TABLE III: Summary of results for all applications (Rel. Er.-Relative
Error) (Act.-Actual) (App.-Application) (Opt.-Optimal)

Best Rel. Er. % Worst Rel. Er. % Opt. # MPI Process
App. RBASP FiM RBASP FiM RBASP FiM Act.

BT 1.62 1.5 59.99 20.25 104 320 320
EP 0.59 2.41 76.74 18.96 300 242 256
SP 1.75 0.39 89.40 22.86 256 64 32
LU 0.01 0.04 81.96 23.74 64 32 16
IS 1.36 1.42 89.71 35.41 70 70 70

CG 1.96 3.74 61.83 39.14 192 96 96

PR 1.45 0.85 49.36 27.23 38 52 60
KM 1.01 0.51 28.78 11.21 72 192 192

Table III lists the best and worst prediction errors as well as
the actual and predicted optimal numbers of processes using
RBASP and FiM. We notice that having a tight prediction error
range is important for these prediction approaches because
such a range can be used to provide a quick approximation
before conducting actual experiments. We observe that FiM
has a relatively tight prediction error range from the best to
the worst, compared to RBASP. Despite the lower prediction
error under the best case, RBASP obtains higher prediction
errors in the worst case for all benchmarks and applications.
This is because the pure regression model used in RBASP has
the poor adaptability to the change in the values of attributes
(e.g., number of processes). We further observe that the optimal
number of processes predicted by FiM is very close to the
actual one. We also rank the number of processes according
to the actual and predicted results from FiM and calculate
the correlation1 between the actual and predicted rankings.
We obtain high correlation in the range of 0.81 to 0.99,
which indicates considerable accuracy of our FiM estimation
technique.
B. Sensitivity Analysis

One important contribution of our modeling techniques is
to accurately predict for large datasets by using only small
datasets to train and calibrate the models. In our experiments,
we use three small datasets as the training ones to collect
data for model calibration. The derived model is then used to
predict the runtime for new datasets (including both small and
large ones) and new sets of application parameters. Therefore,
we perform sensitivity analysis on different dataset sizes and

1A correlation between actual and predicted ranks describes the degree of
agreement between them. Correlation ranges between −1 and 1 with 1 being
the best; higher correlation signifies better accuracy of predicted results.
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Fig. 6: Sensitivity analysis - (a) Dataset size (b) Number of Iterations (c) Number of Clusters

application parameters. We argue that if the user has flexi-
bility to choose application parameters for achieving optimal
performance, our model then can provide the useful guidance.
Our model can predict the performance under different sets of
application parameters and help the user to decide appropriate
parameters. For example, K-means processing with more iter-
ations and more clusters can provide better clustering results
and accuracy, but consume more time. Therefore, it would be
quite useful to use our FiM to estimate the execution time with
respect to the increase in the number of iterations and number
of clusters to determine how much extra latency is needed to
achieve better accuracy.

The results of calculation time for the K-means algorithm
as a function of (a) dataset size, (b) number of iterations, and
(c) number of clusters are plotted in Figure 6. We experiment
with different hardware configurations as shown in Table II,
and present the results of the C5 configuration here. In these
experiments, we also use the predicted optimal number of
processes listed in Table III. For each plot in Figure 6, we do
a sensitivity analysis on one parameter and fix the remaining
two parameters with dataset size of 250 MB, 500 iterations and
250 clusters. We observe that our models can accurately predict
the execution time even when the datasets become large, see
Figure 6(a). Note that we only use small datasets to train
our models. Figure 6 (b) shows a linear increase of execution
time with increasing number of iterations. Figure 6 (c) further
shows execution time with respect to the increase in number
of clusters. Summarizing from Figure 6, we can see that FiM
consistently achieves predicted results in a good agreement
with actual ones under different application parameters like
dataset size, number of iterations and number of clusters.

We further evaluate the prediction of our models under
different hardware configurations. A distributed computing
platform deployed using MPI offers different choices in the
number of parallel processes and the distribution of cores (e.g.,
C1-C5 listed in Table II). Figure 7 shows the actual and pre-
dicted execution times with respect to the number of parallel
processes for (a) K-means and (b) Pagerank, respectively. We
can see that the best performance (i.e., the shortest execution
time) is achieved in the middle range of processes, e.g., 192
for K-means and 60 for Pagerank. FiM is able to accurately
predict the optimal performance point for both applications.
Predicted results match well with actual ones across different
number of processes.

Figure 8 plots the actual and predicted optimal number
of processes for Pagerank using the five different hardware
configurations listed in Table II. The model of FiM is calibrated
under each of these hardware configurations. We observe that
when the platform consists of more distributed cores i.e.,
from C1 to C5, the optimal number of processes tends to
increase in order to reduce calculation time. But, we also

(a) (b)

Fig. 7: Sensitivity analysis w.r.t. number of MPI processes for (a)
K-means and (b) Pagerank

(a) (b)

Fig. 8: Sensitivity analysis w.r.t. distribution of cores under (a) a
small dataset with 40 vertices and (b) a large dataset with 4039
vertices

notice that when the dataset is small (i.e., Figure 8(a)), the
number of optimal processes converges (i.e., the execution
time is not decreasing) even when more distributed cores are
added. These estimation results can thus provide us insight
thoughts regarding the scalability of an application on a multi-
core computing platform.
C. Validation

In this section, we present the validation for considering the
linear regression model to extrapolate hardware variables such
as TC, SC and U . In particular, we show the results by using
K-means clustering as a representative. Recall, for K-means,
we choose the linear regression to extrapolate hardware vari-
ables as a function of application parameters (I , N and K), see
Section II. Actually, there are a variety of regression models
that can be used. It is not straightforward to choose the right
regression model that are best suitable for our requirement.
Even a too complex model might over-fit the training data,
generating a very large prediction error on other datasets.
On the other hand, a simple model may under-estimate the
learning trends and thus produce incorrect predicted results [9].
Considering these two cases, we choose the linear regression
model after examining other regression models such as piece-
wise linear model, Poisson models and quadratic models with
different degrees of polynomial.

We investigate the learning trend of three hardware variables
under different settings of application parameters. Figure 9
depicts the resulting surface of each hardware variable as a
function of application parameters (e.g., I and K for the
K-means application). Similar results can be obtained for
other combinations of application parameters, such as (I ,
N ) and (N , K). In Figure 9, linear surfaces can be found
for different hardware variables. We can thus conclude that
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Fig. 9: Regression mapping (K - number of clusters, I - number of
iterations)

hardware variables TC, SC and U , linearly depend on the
increment in application parameters such as K, I and N . These
results confirm the use of the linear regression mapping in our
machine learning approach.

IV. RELATED WORK
Modeling helps to shorten the development cycle by pro-

viding the necessary insights to obtain optimal performance.
Some recent researches [10], [11] on performance prediction
are more concerned to improve database workloads, but with
increase in scientific data computations, we also need to
explore performance prediction of HPC workloads. It can
be approached in several different ways, including empirical
evaluation, simulation and analytical modeling. Empirical eval-
uation requires the exact implementation as well as similar
hardware to the target because results are based on observed
ground truth. This technique was popular in the past [12], when
computer hardware was stable over long periods.

Although simulators like SimpleScalar [13] and CACTI [14]
can predict with high accuracy, they also consume a long
time in order to give predicted results. Their slow running
time and infrastructural cost are major drawbacks. Analytical
modeling is the technique of building a set of equations
to show the high-level abstraction of the behavior of an
application architecture [15], [16]. This type of model can
be evaluated quickly and easily, but are comparatively less
accurate than empirical and simulation based models because
they lack accurate hardware machine modeling.

Predicting the performance of any parallel processing plat-
form consists of a parallel computation phase. Markov chain
modeling using probabilistic distribution assists in predicting
the calculation load of multi-process and multi-core architec-
tures [4], [17], [18]. These approaches model systems in the
form of equations, where changes to the code or data require
changes to the equations. The above process can be time
consuming when we desire to predict for a range of parameters.
Some analytical models require the conversion of source code
into a control flow chart for the ease of framing equations. Our
model predicts the performance of an application on a range
of input parameters without requiring a new set of equations,
as FiM uses a machine learning model to learn hardware
parameters.

V. CONCLUSIONS

In this paper, we present a novel performance modeling
technique (FiM) to predict the computation time of iterative,
multi-stage scientific data processing applications running on
high performance cloud computing platforms. We combine
two modeling techniques, specifically stochastic Markov mod-
eling and machine learning techniques, to predict the paral-
lel computation time. FiM estimates the time required for

parallel data calculation across a range of input datasets,
application configurations and parallel hardware parameters
such as number of processes. We demonstrate that FiM can
assist system designers and application programmers to choose
optimal processing parameters and application parameters.
More importantly, our prediction model is trained using small
datasets but can predict accurately for large datasets. In the
future, we plan to extend FiM’s ability to predict computation
for other platforms and accelerators, such as Spark, GPUs, etc.
We also plan to evaluate our models for MPI applications in
Amazon EC2 and consider different performance interference
parameters to evaluate the effectiveness of our prediction
technique in virtualized cloud systems.
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