
Improving Virtual Machine Migration via

Deduplication

Jake Roemer†, Mark Groman‡, Zhengyu Yang§, Yufeng Wang†, Chiu C. Tan†, and Ningfang Mi§

† Department of Computer and Information Sciences, Temple University
‡ Department of Computer Science and Engineering, Lehigh University

§ Department of Electrical and Computer Engineering, Northeastern University

Email: {tuc42833,Y.F.Wang,cctan}@temple.edu, reeve.groman@lehigh.edu

yangzy1988@coe.neu.edu, ningfang@ece.neu.edu

Abstract—For this study the techniques of virtual machine
migration are understood and the affects deduplication has on
migration are evaluated. The benefits of using deduplication
and compression on virtual machines show in the metric of
space saved during migrating. Deduplication is computationally
expensive so we evaluate how to group virtual machines with
similar elements in order to improve migration. From this study,
grouping virtual machines based on similar elements improves
the overhead from deduplication and compression but estimates
which virtual machines are best grouped together.

Index Terms—Virtual Machine (VM) migration, Deduplica-
tion, Total Migration Time, Storage Space, Application Degra-
dation, Clustering.

I. INTRODUCTION

Cloud computing has become an ever growing part of

our virtual society. Whether you are improving consumer

experience or a data center strengthening their storage space

and reliability, cloud computing is widely used. With so many

using cloud computing as a resource, we must focus our

attention on improving and optimizing this service.

Data centers use cloud computing for its generous storage

system. To maintain a reliable and effective service to their

costumers, data centers will often migrate between multiple

Virtual Machines (VMs). This allows data centers to recover

from failing VMs or to maintain an even work distribution.

For virtual machine migration to ultimately benefit the user,

the shift from one virtual machine to another must be seamless.

Live migration has been studied extensively to optimize var-

ious metrics in different scenarios. Virtual Machine migration

for data centers are large scale, multi-gigabytes to terabytes

worth of data. This makes moving VMs harder to maintain

and keep efficient in both offline and online approaches.

An offline approach must migrate data within a time frame

of inactivity. An online approach must move data and hold

network connection without the end user noticing delay. Data

is also susceptible to becoming outdated or dirtied during live

migration in the event of an update during transfer.

1) This study focuses on techniques used to improve the

transition from one virtual machine to another in cloud

computing.

2) Due to large data sets deduplication and compression

has become a frequency method of reducing the amount

of data needed to migrate which consequently improves

migration time. This study takes an analysis of VM

image snapshots and determines if deduplication will

ultimately improve VM migration.

3) This study looks to find which states VM images should

be in to be prime candidates for optimal migration.

II. RELATED WORK

This study focuses on how we can improve live VM migra-

tion. We want to understand different migration techniques and

convince ourselves that deduplication is worth performing on

VM images. Live migration is described in [1] as well as the

common techniques of pre-copy and post-copy migration [2].

An understanding of how live data can be stored and how

deduplication affects virtual machine images in the cloud is

studied in [3] and [4]. These papers evaluate finding simi-

larities between VM images and explains how deduplicating

these similarities will affect VM images in the cloud. We see

the benefits and drawbacks of using different deduplication

techniques to improve storage space and the computational

cost of deduplication in [?] and [5].

Similar data blocks are common between virtual machines

which [6] takes advantage of. The basic idea is to find and

track the similar data blocks between all virtual machines. This

way only a single copy of the identical data blocks need to be

transferred. The identical blocks are found using deduplication

and then compression is used to increase the performance of

migration time. A similar approach is seen in [7] where VM

images are grouped together based on deduplication. Then

these groups are deduplicated with the virtual machines at

the destination. Once the system is optimized it updates by

looking at access patterns from the original set of virtual

machines. Most migration is done under the assumption that

moving virtual machines is done locally. In [8] live migration

is evaluated over wide area networks (WANs) using content-

based addressing. The total amount of data is reduced using

deduplication to improve total migration time. Since data is

being sent over a WAN, a cryptographic hash function is

used to keep track of unique data and which data already

exists at different locations. Once the data is distributed to

the destination it goes through content-based addressing which

determines the correct location for the data to be transferred.



In addition to deduplication, compression is a common way

to reduce the amount of data needed to migrate, as in [9]

and [10]. In [9], delta compression prevents virtual machine

data from becoming outdated or dirtied during transfer. This

is done by migrating a full VM first and then only migrating

the changes in content to keep the migration live. In [10],

the characteristics of the data content are looked at to find

the correct choice of compression. Content such as many

zero bytes and non-zero similarity between pages is looked

for and tracked by keeping a dictionary of similar content

updated. This initial evaluation is used to quicken and optimize

compression of data and decompression at the destination.

III. VIRTUAL MACHINE MIGRATION

Virtualization allows multiple operating system instances to

run simultaneously on one physical machine which utilizes

all of the physical resources at hand. The difficulty is when

moving a virtual machine from one physical machine to

another without loosing connection and without any noticeable

down-time. Most importantly, cloud computing services rely

on this mechanic of holding an active internet connection

while transferring the memory, storage and network from one

physical machine to another. This means we have to worry

about the bandwidth to make sure the downtime stays in a

seamless time frame of milliseconds.

Storage transfers and memory data transfers hinder perfor-

mance and can cause large downtime. This is due to either

the size of the data being moved or the difference in live

data between two virtual machines. The virtual machine needs

to pause to calculate any remaining differences to keep the

system safe from corrupted or degraded data and then resume

on the new virtual machine which causes the milliseconds of

downtime.

A. Metrics

The important metrics virtual machine migration optimizes

are:

1) Total migration time is the amount of time needed to

move data from source to destination. This time interval

must be as small as possible to prevent the end user

from noticing any delay. In the event that migration takes

longer than a few milliseconds at any given time then

the end user is prevented from using the virtual machine

and live migration is not achieved.

2) The total storage space of the source affects how much

data must be migrated. The more space that needs to be

moved the longer the migration time. To achieve a better

migration time the storage space can be decreased using

deduplication and compression.

3) Application degradation can occur if data is updated

while also being migrated. This can be prevented by

shortening the migration time or adapting the delta com-

pression technique from [9]. Even though data integrity

is important it is not a common problem for most

techniques.

B. Common Techniques

Two common methods of virtual machine migration are pre-

copy and post-copy [2]. Pre-copy starts migrating data from

source to destination while the source is still running. During

this time updates can be made since the VM is still running

on the source. The data which is changed is copied again

and updated at destination. Once the amount of data being

copied again occurs quicker than changes are made the VM

is stopped. Now that the VM is stopped, no more updates

can be made and the final data changes are copied over. Then

the VM is resumed at the destination. The time between the

virtual machine stopping and resuming is the total migration

time. If small enough the user will not be able to notice that

the switch was ever made.

Post-copy takes the essential data of a running virtual

machine, such as CPU state and registers, and migrates it to

destination first. This is enough to start the virtual machine

at the destination and copy the remaining data after. As the

data is copied from the source it is possible to request a part

of the data that has not been transferred yet. In this event a

page fault is triggered and the source will try to move the

requested data. If this migration time is not small enough it

is possible that data can be degraded. Pre-copy is a technique

that can have a larger downtime but will keep the data up-to-

date. For post-copy there is a small amount of data which is

needed to start the virtual machine at the destination but data is

susceptible to degradation. These techniques are used as basic

migration methods and are optimized using deduplication and

compression techniques in different scenarios.

To improve these techniques deduplication and compression

are used to find similarities in which to cut down on and reduce

the size of the data sent. These secondary operations still

take time and can affect the system negatively if the overhead

outweighs the saved migration time.

Sometimes there can be two virtual machines that are a

better match than two other virtual machines. To prevent

bad matches and optimize space saved; this study looks at

the process of grouping memory images using clustering

techniques.

C. Deduplication

Deduplication is the process of comparing sets of data on

a binary level in order to remove identical data blocks. This

technique is used to save space by eliminating redundancies.

After the data has been broken down into binary we split the

data into block sizes. Once split the data blocks are input for

a hash function to check for a match in the hash table.

In the event of a match, a counter is incremented and the

block is not stored. When no match is made the block is unique

and therefore stored in the hash table. Once finished, the hash

table accounts for the differences between files and markers

for where the similarities exist. The redundant data can now be

removed and space is saved. By minimizing the total amount

of storage space the amount of time needed to migrate is also

reduced.



There are a few techniques used when dealing with dedupli-

cation based on accuracy and cost of time. Whole file hashing

is extremely quick since files are not broken up but compared

as an entire file. This fails to be very effective in finding similar

files since a small update can cause a file to be entirely unique

to its previous version.

Fixed-block hashing is slower but much more accurate. For

this technique, data is split up into fixed size chunks and then

these chunks are compared. The benefits to this technique is

that even if a file is changed only slightly we know that they

are mostly similar.

D. A clustering of virtual machine images

For this study, deduplication is used to cut down on space

needed to migrate virtual machines during live migration.

Since companies rely on the process of live migration so the

focus is on dealing with 1 physical rack; each rack containing a

maximum of n virtual machine(s). We want to migrate x virtual

machines from one rack to k physical racks. The data sets

are virtual machines organized by operating system, running

application and benchmark time found in figure 3.

We hope to achieve an understanding of how these virtual

machine images relate to each other based on the space

which can be saved through deduplication. We take the virtual

machine images mentioned in figure 3 and run deduplication

on each pair, never repeating tests and never deduplicating

the same OS running the same program. The metric our

deduplication tests provide is how much space can be saved

between the two VM images. Using this knowledge we see

patterns between the VM images and start grouping the images

into a more effective process for quicker and more efficient

migration.

Due to these patterns we develop rules of thumb to maxi-

mize total migration time while minimizing computation time.

Once deduplication and clustering took place we noticed that

the virtual machines running the same applications would save

the most space between them. This fact was seen again, at a

smaller amount of space savings, for virtual machines running

on the same operating system and similarly for benchmark

times. This creates trends which indicate that we can intu-

itively group virtual machines without deduplication. Through

these trends we create rules of thumb that will allow us to

more effectively group virtual machine images.

E. Workload Creation

Basically there are two main infrastructures in current

business VM platforms: shared-storage VM networks sys-

tem (SSVNS) and non-shared-storage VM networks system

(NSSVNS). SSVNS has one or more centralized storage

servers (online disk images, e.g, FCoE or iSCSI with VMware

VMFS, shown in figure 1) accessible for each server node

(offline memory images); while in NSSVNS, each node has

isolated storages (offline disk and memory images). The VM

migrations at these two infrastructures mainly differ in the

to-be-migrated images: migration in SSVNS only needs to

(1)

Fig. 1. A sample of shared storage networks system model.

Fig. 2. Experiment Environment.

migrate memory images, while migration in NSSVNS has to

take care of both memory images and disk images.

We adopt the SSVMS infrastructure in our VM platform

such that only memory images are collected for deduplication

analysis as well as VM migrations. We conduct experiments

for collecting VM images under the open source Xen virtual

machine manager (VMM) [4]. In order to emulate a variety

of real runtime cases in business VM network systems, we

consider a set of workloads which differ in the base operating

systems or in the running applications or both of them.

Table III-E shows five representative workloads used in our

experiments, and Table III-E gives the specifics of the software

and hardware used in our test bed.

Table 2: Control Group
Num. OS OS Version Application

1 Same Same Different

2 Same Different Same

3 Same Different Different

4 Different - Different

5 Different - Different

In order to force frequent changes in VM images, we calcu-

late the memory change ratios (MCRs) for each benchmark in

SPEC2006. Based on our observation in table 4, we choose the

top three memory change ratio benchmarks in SPEC2006[5]:

BZIP2, MCF and ASTAR. They simulate three different real

world workloads that modify memory heavily.



Table 3: Table of VM Images
Benchmark Name MCR (4G Mem) MCR (1G Mem)

401.BZIP2 22% 84%

429.MCF 21% 83%

473.ASTAR 7% 28%

BZIP2 - Compression Simulation: Compression (as well as

decompression) is a commonly used operation in VMs (e.g,

archive in webservers) which consumes a large amount of

memory. The 401.BZIP2 is a compression benchmark based

on Julian Seward’s bzip2 version 1.0.3. Compression and

decompression can be performed within the memory, which

change 84% of the total 1G memory or 22% of the total 4G

memory (shown in table 3). As a result, such a benchmark is

designed to test CPU and memory only with few disk accesses.

MCF - Combinatorial Optimization Simulation: The 429.M-

CF is a program used for the single-depot vehicle scheduling

in public mass transportation, which considers an environment

with one single depot and a homogeneous vehicle fleet. This

benchmark frequently changes the memory pages in order to

reduce cache misses and accelerate program performance by

rearranging elements of struct node and struct in the program

in order, which are entirely done in the memory.

ASTAR - Artificial Intelligence Simulation: The 473.AS-

TAR is a computer games benchmark made by Lev Dym-

chenko. ASTAR includes Artificial Intelligence and Path find-

ing. ASTAR is derived from a portable 2D path-finding library

that is used in game’s AI. Although compared with the pre-

vious two benchmarks, ASTAR does not consume large ratio

of the memory, it is still a strongly representative application

in real world.

As shown in Table 4, in the experiment, we run applications

(three benchmarks) on four operating systems and get 60

memory images in total. For each OS pass (the rows in the

table), we continuously run each benchmark for five times.

For each run, we use the xm dump-core command to capture

the memory image. The benefit of dump-core is that it does

not required to turn off the VM. Instead, it just pause the VM

for little seconds and save the memory file, which ensured

the SLA (Service-level agreement). Moreover, in order to see

both the difference of duplication degree between consistently

running and non-consistently running scenarios, we on purpose

reboot the physical server between different workloads (e.g,

between image 5 and image 6, there is a physical reboot).

F. Deduplication Testing Framework

For our implementation we take n virtual machines and split

them up into k clusters each containing a maximum of x virtual

machines. So suppose we have 12 VMs on one physical server

and we want to migrate them to 4 different servers. We create

a limit of how many VMs we want per server to keep the

work load evenly distributed. The value of x is determined by

x = n

k
and the remainder is added to one of the servers with

space; in our case we pick an arbitrary limit of VMs in one

server.

For this study, fixed block hashing is used to perform

deduplication on each set of virtual machines. We test two

VMs at a time to see the amount of space saved between

both. The results form a relation between each pair of virtual

machines which represents the space saved between them.

We expect to see similarities between virtual machines

which have one of the following elements in common: operat-

ing systems, running application and/or benchmark times. In

the event these tests show no correlation between any element

then no assumption can be made about the data. Therefore the

overhead for deduplication or compression would have to be

taken in order to improve migration. If expectations are met

then we can predict that virtual machines with the same similar

elements can be grouped for optimizing migration without

overhead.

Once deduplicated the virtual machines are clustered for

evaluation. [11] and [12] describe the simplest kind of clus-

tering methods, called Hierarchical Methods, which construct

clusters recursively by updating a cluster. This method reduces

the risk of error when finding the greatest links between two

virtual machines.

The three different hierarchical methods we are using for

clustering are:

1) Single-linkage or nearest neighborhood. The largest

edge between two nodes is chosen and then recursively

the next largest until all edges are connected without

circuits. After this, cut the smallest (k-1) edges, where

k is the number of clusters you want, and group the

remaining connections.

2) To get an even distribution of nodes we need to choose

a k number of clusters and an x maximum number

of nodes in a cluster. This method then repeats as

nearest neighborhood but will start a new cluster if the

maximum is reached for one cluster.

3) An alternate form to evenly distribute virtual machines

across multiple servers is to start the k clusters with

no node incident to more than one edge; two VMs per

cluster. Once the k clusters are set up, the largest cluster

is recursively filled until the x maximum number of

virtual machines is reached. Then repeat the process for

the remaining clusters.

IV. EVALUATION

A. Deduplication of Data

The following combinations of virtual machine attributes

were tested to determine common trends:

1) Similar operating systems running both the same and

different applications with different benchmark times.

2) Same operating systems but different versions running

both the same and different applications with different

benchmark times.

3) Different operating systems running both the same and

different applications with the same benchmark times.

From the data acquired from deduplication for data set 1,

we noticed hierarchical method 1 is unreliable because only

two VMs migrated away from the original set of VMs. For

methods 2 and 3 we start to see a trend forming between the



Fig. 3. List of VM images

virtual machine similarities. We see that the virtual machines

are grouped mostly based on the program they are running

instead of the time the snapshots were taken. We can also

notice that the virtual machines sharing the same application

1(BZIP) has the strongest relation for space saved between the

operating systems. This is our first indication that applications

have the largest influence on space saved from deduplication.

For data set 2, we see for hierarchical method 2 the same

pattern as before where the greatest similarity between the

virtual machines is the applications being run; 1(BZIP) being

the greatest contributor to space saved. The remaining clusters

in method 2 indicate that there is a greater correspondence be-

tween the version of the operating system than the benchmark

time the snapshot was taken. This again is a clear indication

that there are correlations between what the data was running

and space saved.

For the last data set 3, during hierarchical method 2 we no-

tice a trend of the most space saved between virtual machines

running the same application. These tests show that there

should be a rule for grouping the virtual machines together to

maximize the space saved when deduplicating. The next set

of tests use the data obtained for deduplication and clusters

the VMs into groups.

B. Clustering of Data

Common simple methods of clustering are picking data

randomly and Round Robin. We test these methods against

the three hierarchical methods of clustering explained earlier.

The clustering will group the virtual machines and determine

the total amount of storage space after full deduplication. The

hierarchical methods are expected to group virtual machines

based on the similar elements tested earlier. Since both com-

mon methods have a small overhead, if either common method

performs better than the hierarchical methods then groupings

based on similar elements will be too computationally costly.

From figure 4 we can see picking random is the worse case

since it transfers the most amount of space. Round Robin

transmits as much data as hierarchical Method 2. Methods

1 and 3 are small improvements over Method 2 and Round

Robin. Method 1 is not a valid method due to inefficient work

distribution. You can see from this graph that the clustering

methods perform better than the standard model of grouping

data into clusters. From these results we can safely say

grouping virtual machines is beneficial.

The following graphs perform clustering using the hier-

archical methods against the intuitive rule of thumb. The

Method1 Method2 Method3 RoundRobin Random
0

1

2

3

4

5

6

7
Clustering vs. Standard grouping

Methods of grouping

A
m

o
u
n
t 
o
f 
d
a
ta

 t
ra

n
s
fe

re
d
 (

G
B

)

Fig. 4. Clustering Vs Standard Methods

rule of thumb created will match virtual machines based on

common elements shared between them. This method has very

little overhead since no extra information is needed from the

virtual machines. Depending on how much space is saved will

determine if virtual machines can be grouped based on similar

elements alone or if a clustering method should be used in

place.

Method1 Method2 Method3 Rule_of_Thumb
0

1

2

3

4

5

6

7

8
Application and Time grouping

Methods of grouping

A
m

o
u
n
t 
o
f 
d
a
ta

 t
ra

n
s
fe

re
d
 (

G
B

)

Fig. 5. Application vs. Time

Figure 5 compares varying application against varying

benchmark time. The rule of thumb groups virtual machines

sharing the same application first and then by operating system

followed by benchmark time. The groups created from the

different methods support the intuition that virtual machines

sharing similar applications group together better than similar

benchmark time. This graph shows that hierarchical methods

perform better than rule of thumb in amount of data trans-

ferred. If you notice the rule of thumb does not outperform



the other methods but the amount of space saved is close.

From the way the clusters formed we noticed that appli-

cations were grouped together instead of benchmark time.

This supports the theory that application is a better match

between virtual machines than grouping by benchmark time.

Hierarchical methods perform better than rule of thumb but

the computation time is a lot higher.

Method1 Method2 Method3 Rule_of_Thumb
0

1

2

3

4

5

6

7

8

9

10
Operating System and Application grouping

Methods of grouping

A
m

o
u
n
t 
o
f 
d
a
ta

 t
ra

n
s
fe

re
d
 (

G
B

)

Fig. 6. Application vs. Operating System

For figure 6 we compare varying operating system against

varying application. This graph shows that the rule of thumb

transfers more data than the other methods. From clustering

the data we find that grouping by operating system does not

perform better than grouping by application. This solidifies

the rule of thumb for grouping by application then operating

system followed by benchmark time. The trend is that the

hierarchical methods transfer less data than rule of thumb but

at a higher computational cost.

V. CONCLUSION

This study focuses on the techniques of virtual machine

migration and how to improve it. Virtual machine migration

can be looked at in many different scenarios which all need the

metric migration time improved. To improve migration time

the amount of space needed to transfer during migration must

be minimized. Optimizing storage space is achieved through

deduplication and compression but both methods are computa-

tionally expensive. An alternate solution for optimizing virtual

machine migration is to estimate which virtual machines

should move together without the overhead of deduplication

or compression.

From a collection of many studies done on virtual machine

migration a trend between the data is seen. On average virtual

machines which are running the same application have a higher

frequency of similar blocks than virtual machines sharing

the same operating system. If migration time needs to be

optimized with no constraints on how long it takes to find

the best matching virtual machines then deduplication and

clustering should be used. Otherwise, if less than perfect

matches between virtual machines can be made then grouping

based on only common running application will cut overhead.

REFERENCES

[1] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in In

Proceedings of the 2nd ACM/USENIX Symposium on Networked Systems

Design and Implementation (NSDI, 2005, pp. 273–286.
[2] A. Shribman and B. Hudzia, “Pre-copy and post-copy vm live migration

for memory intensive applications,” in Euro-Par 2012: Parallel Process-

ing Workshops, ser. Lecture Notes in Computer Science, I. Caragiannis,
M. Alexander, R. Badia, M. Cannataro, A. Costan, M. Danelutto,
F. Desprez, B. Krammer, J. Sahuquillo, S. Scott, and J. Weidendorfer,
Eds., vol. 7640. Springer Berlin Heidelberg, 2013, pp. 539–547.

[3] C.-H. Ng, M. Ma, T.-Y. Wong, P. Lee, and J. Lui, “Live deduplication
storage of virtual machine images in an open-source cloud,” Middleware

2011, pp. 81–100, 2011.
[4] K. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei,

“An empirical analysis of similarity in virtual machine images,” in
Proceedings of the Middleware 2011 Industry Track Workshop. ACM,
2011, p. 6.

[5] G. Lu, Y. Jin, and D. H. Du, “Frequency based chunking for data
de-duplication,” in Modeling, Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2010 IEEE International Sym-

posium on. IEEE, 2010, pp. 287–296.
[6] U. Deshpande, X. Wang, and K. Gopalan, “Live gang migration of

virtual machines,” in Proceedings of the 20th International Symposium

on High Performance Distributed Computing, ser. HPDC ’11. New
York, NY, USA: ACM, 2011, pp. 135–146.

[7] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu, “Vmflock:
Virtual machine co-migration for the cloud,” in Proceedings of the 20th

International Symposium on High Performance Distributed Computing,
ser. HPDC ’11. New York, NY, USA: ACM, 2011, pp. 159–170.

[8] P. Riteau, C. Morin, and T. Priol, “Shrinker: Improving live migration
of virtual clusters over wans with distributed data deduplication and
content-based addressing,” in Euro-Par 2011 Parallel Processing, ser.
Lecture Notes in Computer Science, E. Jeannot, R. Namyst, and J. Ro-
man, Eds. Springer Berlin Heidelberg, 2011, vol. 6852, pp. 431–442.

[9] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta
compression techniques for efficient live migration of large virtual ma-
chines,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, ser. VEE ’11. New
York, NY, USA: ACM, 2011, pp. 111–120.

[10] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive, memory compression,” in Cluster Computing

and Workshops, 2009. CLUSTER ’09. IEEE International Conference

on, Aug 2009, pp. 1–10.
[11] J. Grabmeier, A. Rudolph, and I. I. Gmbh, “Techniques of cluster algo-

rithms in data mining. version 2.0,” IBM Informationssysteme GmbH,
1998.

[12] L. Rokach and O. Maimon, “Chapter 15 clustering methods.”


