
Understanding Performance of I/O Intensive
Containerized Applications for NVMe SSDs

Janki Bhimani∗, Jingpei Yang†, Zhengyu Yang∗, Ningfang Mi∗,
Qiumin Xu†, Manu Awasthi†, Rajinikanth Pandurangan† and Vijay Balakrishnan†

Northeastern University - Boston∗, Samsung Semiconductor, Inc - San Jose†

Email: ∗bhimani@ece.neu.edu, †jingpei.yang@samsung.com, ∗yang.zhe@husky.neu.edu, ∗ningfang@ece.neu.edu,
†q.xu@samsung.com, †manu.awasthi@samsung.com, †rajini.pandu@samsung.com and †vijay.bala@samsung.com

Abstract—Our cloud-based IT world is founded on hyper-
visors and containers. Containers are becoming an important
cornerstone, which is increasingly used day-by-day. Among dif-
ferent available frameworks, docker has become one of the
major adoptees to use containerized platform in data centers
and enterprise servers, due to its ease of deploying and scaling.
Further more, the performance benefits of a lightweight container
platform can be leveraged even more with a fast back-end storage
like high performance SSDs. However, increase in number of
simultaneously operating docker containers may not guarantee
an aggregated performance improvement due to saturation. Thus,
understanding performance bottleneck in a multi-tenancy docker
environment is critically important to maintain application level
fairness and perform better resource management.

In this paper, we characterize the performance of persis-
tent storage option (through data volume) for I/O intensive,
dockerized applications. Our work investigates the impact on
performance with increasing number of simultaneous docker
containers in different workload environments. We provide, first
of its kind study of I/O intensive containerized applications
operating with NVMe SSDs. We show that 1) a six times
better application throughput can be obtained, just by wise
selection of number of containerized instances compared to single
instance; and 2) for multiple application containers running
simultaneously, an application throughput may degrade upto
50% compared to a stand-alone applications throughput, if good
choice of application and workload is not made. We then propose
novel design guidelines for an optimal and fair operation of
both homogeneous and heterogeneous environments mixed with
different applications and workloads.

Keywords—Docker containers, Flash-Memory, SSDs, NVMe,
MySQL, Cassandra, FIO, Database

I. INTRODUCTION

Docker containers are gaining more users due to their
simple and efficient operation characters [1]. Container tech-
nology is projected to be the backbone on which software
development cycle can be shortened [2]–[4]. Containers and
virtual machines have similar resource isolation and allocation
benefits but different architectural approaches, which allows
containers to be more portable and efficient compared to
bare metal and virtual machines [5], [6]. Containers are also
proposed as a solution to alleviate dependency issues. Among
different container technologies (e.g., docker, LxC, runC),
docker has become one of the major adoptees for its ease of
deploying and scaling.

While characterizing performance for multiple instances
on a bare metal or virtual machine is not new [7], [8], I/O

intensive dockerized applications deserve a special attention.
First, the lightweight characteristic of docker containers pro-
motes the simultaneous use of multiple containers to deploy
multiple instances of same or different applications [9]. Sec-
ond, the resource contention increases with increasing number
of containerized instances, resulting in performance variation
of each instance. However, the behavior of each instance is
not thoroughly investigated given limited hardware resources.
Third, there is always a requirement for data persistency
in container for data accessibility which could be achieved
through docker data volume. With the world looking forward
towards high performance SSDs for their massive storage
needs [10], more performance benefits could be gained on I/O
intensive dockerized applications by using these devices as a
backend. Given the state of art, understanding the performance
of different types of workloads and applications for these
NVMe high end SSDs is highly demanded.

In this paper, we focus on docker′s persistent storage
option called docker data volume, supported by an array of
high-end enterprise SSDs. At the first glance, we observe
that with the increase in number of containers, initially the
performance can get better but eventually may saturate or even
degrade due to limitation of hardware resources. We segregate
application layer setup into homogeneous and heterogeneous.
The container instances of same database application with
same workload characteristics are called homogeneous as all
such containers would compete for similar resources. For
example, the setup is called homogeneous if all containers are
of MySQL running TPC-C. While, the container instances of
either different database applications or different workloads
are called heterogeneous. The setup is called heterogeneous
if some containers are of MySQL running TPC-C and si-
multaneously some other containers are of Cassandra running
Cassandra-stress.

The major contributions of this paper are:

• Understanding the performance of write and read in-
tensive workloads for homogeneous application setup.

• Analyzing and improving resource utilization and fair
sharing of resources among different application con-
tainers.

• Investigating application throughput throttle for simul-
taneous operations of different application containers.

• Proposing novel design guidelines for optimal and fair
operations of mixed dockeraized applications on high

978-1-5090-5252-3/16/$31.00 ©2016 IEEE

performance NVMe SSDs.

We provide, first of its kind work to show that, 1) for write
intensive workloads, application throughput increases with in-
creasing number of containers; 2) for read intensive workloads,
application throughput may experience a throughput valley
with increasing number of containers due to memory limi-
tation; 3) for simultaneous operation of application containers
performing sequential writes (or reads) and random writes (or
reads), throughput of application performing random writes (or
reads) is scarified terribly when compared to their respective
standalone throughput; and 4) simultaneous operation of write
intensive and read intensive applications is beneficial with
better scope of increasing resource utilization and fair resource
sharing.

The remainder of this paper is organized as follows. In
Section II, we describe the related work. In Section III-B, we
explain docker container data storage and our experimental
setup. In Section IV, we explore homogeneous docker contain-
ers and heterogeneous docker containers. Finally, in Section VI
we summarize our results as guidelines.

II. RELATED WORK

The docker containers of most of the database applications
like Redis, MySQL etc. are available to download [1]. The
reported betterment in performance with the use of docker
containers over the bare metal and virtual machines have
attracted many users in a very short time. Charles Anderson
introduced docker in [2] as container visualization technology,
which is very light-weight compared to virtual machines.
Docker containers help to address couple of problems, first,
overcome the challenges of speed, performance and additional
latency introduced by traditional VMs. Second, to reduce the
development cycle of software, as sharing becomes easier with
application dockers. Third, portability of application increases
by making them compatible to run on different platforms.
Finally, the recent research work [11] was emphasized on the
use of docker for increasing computational reproducibility of
research. With all these attractive features, docker containers
are becoming the current mainstay mechanism for deploying
applications in cloud platform.

Tracking the rapid growth of docker containers, it becomes
important to evaluate its performance. Few attempts have been
made to compare the performance of docker containers with
virtual machines. In [5], authors explore the performance of
two real applications (MySQL and Redis) individually and
show that better throughput (transactions/s) can be obtained
by using docker container compared to virtual machine. [9]
and [6] explore the performance of Linux containers for
building cloud and PaaS. Thus, most of the performance
evaluation on docker container environment are concerned
about exploring the hardware dependency of containers in
terms of how name-space is used. In addition few research
works have explored different container file system storage
drivers (e.g. AUFS, Btrfs) [5], different copy-on-write strategy
and data volume. Although containerized environment provide
good scope of application level parallelism, but no study has
explored the performance with increasing number of simulta-
neously executing containers. With more and more companies
tending to run multiple containers simultaneously on each host,

analyzing the performance of such an environment becomes
highly important. In this work, we explore homogeneous
and heterogeneous container environment to excavate different
effects on application performance.

On the other hand, in order to support such a parallel
application layer with multiple application containers operating
simultaneously, a very fast storage is required. SSDs were
initially used as a bufferpool to cache data between RAM
and hard disk [12]–[16]. But as the $/GB of flash drives
kept decreasing then the use of SSDs as a main storage
became prominent [17], [18]. Now-a-days, the use of SSDs in
enterprise server and data center is increasing. In [19] and [20],
authors explore the performance of SSDs as main storage
for database applications. Extensive research has also been
performed on enhancement of energy efficiency of database ap-
plications using SSDs [21]–[24]. Furthermore, with the world
looking forward towards high performance SSDs for their
massive storage needs, NVMe is emerging as the protocol for
communication with high performance SSDs over PCIe [25].

With the emergence of containerization techniques it be-
comes important to characterize the performance of high per-
formance NVMe SSDs, with containerized application. To the
best of our knowledge, this is the first attempt of performance
evaluation of such a system. In this paper we aim to explore
behavior of different real database containerized applications
with high performance NVMe SSDs.

III. HARDWARE ARCHITECTURE AND APPLICATION

LAYOUT

A. Container Data Storage

Docker provides application virtualization using a con-
tainerized environment. Docker image is an inert, immutable,
file that is essentially a snapshot of a container. Multiple docker
containers can be instantiated with an application image. In
order to maintain lightweight characteristics, it is advisable
to keep the installation stack within the container as small
as possible for better performance. The data management of
containers is superintend either by docker storage drivers (e.g.
OverlayFS, AUFS, Btrfs, etc.) or by docker data volumes.

Docker daemon can only run one storage driver, and all
containers created by that daemon instance use the same
storage driver. Storage drivers operate with copy-on-write
technique, which thus provide more advantage for read inten-
sive applications. For applications that generate heavy write
workloads, it is advisable to maintain data persistence. Docker
volume is a mechanism to automatically provide data persis-
tence for containers. A volume is a directory or a file that can
be mounted directly inside the container. The biggest benefit
of this feature is that I/O operations through this path are
independent of the choice of the storage driver, and should
be able to operate at the I/O capabilities of the host.

In this paper, we characterize the performance of I/O
intensive applications using the persistent storage option of
docker data volumes. Figure 1, shows the stacked I/O path
of underlying hardware. I/Os are generated by containerized
workloads. Data volume is a directory or a file on the host
system that can be mounted inside the container, and should be
able to operate at the I/O capabilities of the host (see Figure 1

(f)). I/Os on the host are managed by the host backing file
system such as XFS or EXT4 (see Figure 1 (e)). In all our
experiments, we use XFS as the backing file system. This
backing file system relays on a stack of logical and physical
volumes, formed over an array of NVMe SSDs.

B. Experimental Setup

Fig. 1: Containerized system on flash volume of SSDs

We built a platform consisting of multiple docker contain-
ers operating on an array of three enterprise NVMe drives in
order to provide higher disk bandwidth as shown in Figure 1
(a). Thus, an array of multiple SSDs is used to persist data of
database applications running in the docker. The stack of host
OS, docker engine and docker application images is maintained
on a separate disk than that used for storing containerized
application files and databases (see Figure 1 (b)).

The physical volume mapping 100% capacity of each
SSD is created through LVM (Logical Volume Manager) (see
Figure 1 (c)). These multiple physical volumes are combined
to form single stripped logical volume using lvcreate [26],
[27]. The data written to this logical volume is laid out in a
stripped fashion across all the disks by the file system. The sum
of the sizes of all SSDs maps to the size of logical volume (see
Figure 1 (d)). Table I gives the detailed hardware configuration
of our platform.

We chose MySQL [28] and Cassandra [29] for our docker
performance analysis as these two are not only popular in
relational database or NoSQL database applications, but also
widely adopted by companies using docker for production.
Respectively, we run the TPC-C benchmark [30] in MySQL
container and Cassandras built-in benchmark tool, cassandra-
stress [31] for our experiments.

In summary, Figure 2 shows the system stack of our
platform. At the application layer, we have multiple simulta-
neously operating containers. Each container works in its own
separate workspace in terms of file system and database. We
analyze the performance of two database applications (MySQL
5.7 and Cassandra 3.0), for increasing number of docker
containers. We evaluate two different scenarios of homoge-
neous and heterogeneous container traffic. The homogeneous
container traffic is caused by containers running the same

TABLE I: Hardware Configuration

CPU type Intel(R) Xeon(R)
CPU E5-2640 v3

CPU speed 2.60 GHz
CPU #cores 32 hyper-threaded

CPU cache size 20480 KB
CPU Memory 128 GB

OSType linux
Kernel Version 4.2.0-37-generic

Operating System Ubuntu 16.04 LTS
Backup storage Samsung PM953 960 GB
Docker version 1.11
MySQL version 5.7

Cassandra version 3.0
FIO version 2.2

Fig. 2: System Stack

application under the same workload resources (e.g., client
threads, data set size, read/write ratio, etc.). The heterogeneous
container traffic is caused by containers running different
workloads and different applications. The processing layer
consists of a single processing unit for which all the docker
containers compete. Memory and page cache resource is shared
among all containers. No prior resource allocations in terms
of processing unit and memory are done and all the containers
compete on these shared resources at run time. The storage
layer is managed in two different stacks: a hard drive that is
responsible to store OS, docker engine, container images etc;
and an array of three SSD drives dedicated to store database
of all containerized applications managed by LVM.

IV. EXPERIMENTAL RESULTS

In this section, we present the results to show the scaling of
containerized docker instances on SSDs. We experiment with
increasing number of simultaneously operating containerized
instances. We evaluate two different types of containerized
setup: 1)Homogeneous and 2)Heterogeneous. For each, we use
the FIO benchmark [32] to cross verify the observations which
we obtain from I/O intensive applications. We will use NVMe
SSDs interchangeably with disks for the rest of the paper to
refer to the persistent storage devices.

A. Homogeneous Docker Containers

We explore homogeneous docker containers by using
MySQL and Cassandra applications. We first experiment with
increasing number of MySQL containers to observe that ap-
plication throughput scales due to increasing CPU utilization
although disk bandwidth utilization saturates. Second, we

(a) (b) (c)

Fig. 3: Homogeneous with MySQL (TPC-C workload). (a) MySQL throughput with evaluation metric as the number of
transactions completed per minute (TpmC), (b) CPU utilization, and (c) Disk bandwidth utilization

(a) (b) (c)

Fig. 4: Average latency for all running containers, (a) homogeneous MySQL, (b) homogeneous Cassandra W, (c) heterogeneous
MySQL + Cassandra W

experiment with Cassandra 100% write (i.e. update) workload,
which also scales with increasing number of containers but is
limited by saturation of CPU utilization. Third, we experiment
with Cassandra 100% read workload, where we note an inter-
esting observation of throughput valley. Then, we investigate
the reason behind this throughput valley to be page caching
and memory. Lastly, we cross verify the throughput valley
observation by constructing a similar FIO benchmark workload
setup. Note that everywhere we mention write workload, we
mean update operation.

Figure 3 shows the results of standalone containerized
instances of MySQL. The workload configuration of MySQL
is given in Table II. Figure 3 (a) shows that containerized
instances of MySQL scale well with increasing number of con-
tainers. We observe that inspite of the decreasing throughput of
each individual containerized instance, the cumulative through-
put of MySQL containers increases with increasing number
of simultaneous containers. The cumulative throughput is the
sum of throughput of all simultaneously operating containers.
Figure 3 (b) and (c) shows that disk bandwidth utilization
gets saturated at four simultaneous containers, but cumulative
throughput keeps increasing with higher CPU utilization on
increasing number of simultaneous containers. Figure 4 (a)
further presents the average 95 percentile latency as a function
of number of containers under the homogeneous MySQL TPC-
C workload. We observe that 95 percentile latency increases
with increasing number of containers. Thus, we notice that

there exists a trade off between cumulative throughput and
I/O latency when we add more containers.

The similar experiments were conducted using a Cassandra
application for 100% writes and 100% reads. The workload
configuration of Cassandra W is given in Table II. Figure 5
(a), shows that containerized instances of Cassandra 100%
writes scales with increasing number of containers till six si-
multaneous containers. From Figure 5 (b), we observe that due
to saturation of CPU utilization, the throughput saturates for
further increase in number of containers. Even after throughput
saturates at six containers, note that the latency keeps increas-
ing with increasing number of simultaneous containers (see
Figure 5 (a) and Figure 4 (b)).

Thus, from the above two experiments (i.e., MySQL and
Cassandra W), we notice that effects of CPU as bottleneck are
more drastic on overall performance when compared to disk as
bottleneck. So, an optimal operating number of simultaneous
containers for achieving maximum throughput and minimum
possible latency would be the number of containers at which
CPU gets saturated.

Next, we investigate the performance under the 100%
read workload using Cassandra R, see Table II for workload
details. Figure 6 (a) shows the jagged behavior of containerized
instances. The exceptionally high performance can be observed
till the number of containerized instances is increased upto
three. This is because, after fetching data once from disk
into main memory, the read operations are performed mainly

TABLE II: Homogeneous Workload Configuration

Workload

MySQL TPC-C # Warehouses - 1250 # Connections - 100
Cassandra W Cassandra-stress 100% Writes (i.e. Updates) # Records - 50 million Record size - 1KB
Cassandra R Cassandra-stress 100% Reads # Records - 50 million Record size - 1KB

(a) (b) (c)

Fig. 5: Homogeneous with Cassandra (Cassandra W workload). (a) Cassandra throughput, (b) CPU utilization, (c) Disk bandwidth
utilization

(a) (b) (c)

Fig. 6: Homogeneous for Cassandra (Cassandra R workload). (a) Cassandra throughput, (b) CPU utilization, (c) Disk bandwidth
utilization

from memory and page cache. The united size of four and
more containers is not sufficient to fit in page cache and
memory. Thus, the data is paged in and out leading to higher
number of disk accesses. As disk access latency is much
higher than the page cache and memory access latency, so
when the number of simultaneous containers is more than four,
throughput drops because a large amount of I/Os hit the disk.
The throughput then becomes saturated by disk bandwidth.
Figure 6 (b) shows that the maximum CPU utilization for
read-only operations is lower (i.e., 65%) when compared to
that of the write-only operations (i.e., 90% in Figure 5 (b)).
Figure 6 (c) further shows that initially for a small number of
simultaneous containerized instances most read operations are
performed from memory and thus disk bandwidth utilization is
very low. But, when the throughput valley is observed at four
simultaneous containers, most of the operations are performed
from disk. This leads to the increase and the saturation of disk
bandwidth utilization.

In order to cross verify the above observed anomalous

phenomenon of throughput valley, we perform similar FIO
(Flexible I/O) benchmark [32] setup experiment. The size of
each containerized FIO instance is set similar to the data set
size of Cassandra container running the Cassandra-stress read
workload. In order to observe the effect of operations from
memory, page cache is not bypassed in this FIO experiment.

Figure 7 shows the results of containerized instances of the
FIO benchmark. In order to obtain the similar setup as that of
the Cassandra R experiments, each FIO container operates on
a file with the size of 50GB. The FIO workload is random read
of size 4K, job size of 32 and IO depth of 32. Figure 7 also
shows the throughput valley similar as observed in Figure 6.
Figure 7 further shows that the cumulative throughput of read
operations observed for 6, 7 and 8 simultaneous instances is
very close to the rated throughput of disk. Thus the above
observations cross verifies the throughput valley effect.

In summary, for a write intensive application, if CPU is
not the bottleneck, then increasing number of homogeneous
containers increases throughput till CPU gets saturated. On

Fig. 7: Homogeneous for FIO (4KB random read buffered IO)

the other hand, for write intensive applications, once CPU be-
comes saturated then increasing the number of container only
increases the latency without any improvement in throughput.
Finally, if an application is read intensive and the container size
is small, then the majority of its operations can be performed
from page cache and memory. For such a case, it is advisable
to limit the number of containers before falling into throughput
valley.

B. Heterogeneous Docker Containers

We explore heterogeneous docker containers by running
MySQL and Cassandra applications simultaneously. We ob-
serve an interesting observation that while operating simul-
taneously, the throughput of MySQL degrades to more than
50% of its standalone throughput observed in homogeneous
experiments. But, the throughput of Cassandra degrades only
around 16% of its standalone throughput observed in homo-
geneous experiments. In order to investigate the reason behind
the observed unfair throughput scarifies, we experiment with
different types of heterogeneous mixes such as, 1) Cassandra
with FIO random write workload; 2) Cassandra with FIO
sequential write workload; and 3) Cassandra with FIO random
read workload. For all the heterogeneous experiments, we
report the results for equal number of operating containers of
both applications (i.e., total 16 containers would pertain to 8
containers of each application).

(a) (b)

Fig. 8: Heterogeneous: Simultaneous Cassandra (Cassandra W
workload) and MySQL (TPC-C workload). (a) Cassandra
throughput, (b) MySQL throughput

Figure 8, shows the results of simultaneously operating
containerized instances of Cassandra and MySQL with work-
load configurations of Cassandra W and TPC-C as given in

Table II. Figure 8 (a) and (b), shows the application throughput
of Cassandra and MySQL, respectively. For example, the first
bar of Figure 8 (a), represents the throughput of Cassandra,
when in total two instances, each one of Cassandra and
MySQL are running simultaneously. We observe the unfair
throughput throttle between Cassandra and MySQL. The best
throughput of standalone homogeneous Cassandra instances
from Figure 5 is 60K op rate. The best throughput with
homogeneous MySQL instances from Figure 3 is 18K TpmC.
But, for heterogeneous experiments of Cassandra and MySQL
containers running simultaneously, the best throughput ob-
served for Cassandra and MySQL from Figure 8 (a) and (b) is
50K op rate and 9K TpmC, respectively. While comparing
the throughput of applications in standalone homogeneous
deployment and heterogeneous deployment, we observe that
the average throughput degradation of Cassandra containers is
around 16% (i.e., from 60K to 50K op rate). But throughput
degradation of MySQL containers is around 50% (i.e., 18K
to 9K TpmC). Thus, MySQL containers scarify higher than
Cassandra containers when both the application containers
are operated simultaneously in the heterogeneous setup. From
Figure 4 (c), we also observe that for this heterogeneous setup,
latency of MySQL increases at higher rate when compared to
Cassandra.

This is an interesting observation and we believe the
nature of applications plays an important role. While oper-
ating simultaneous containers of different applications in the
heterogeneous setup, we observed better resource utilization
like CPU and disk. However, we would not like to group
such application containers together, where unfair throughput
sacrifices may compensate performance of one of the applica-
tion drastically. We anticipate the reason behind such unfair
throughput distribution to be the memory controller, which
favors sequential writes more than random writes. Cassandra
application performs comparatively higher proportion of se-
quential writes when compared to MySQL. To validate it, we
conduct following three experiments.

(a) (b)

Fig. 9: Heterogeneous: Simultaneous Cassandra (Cassandra W
workload) and FIO (4KB random write). (a) Cassandra
throughput, (b) FIO throughput

First, we run simultaneous operations of Cassandra W with
FIO random writes. We expect to see similar unfair throttle of
throughput with containers of FIO random writers sacrificing
higher than Cassandra, when compared to their respective
standalone homogeneous operation. As expected, Figure 9
shows the unfair throughput throttle. The best throughput for
standalone homogeneous FIO random write containers is 250k
IOPS, but the maximum throughput we observe in Figure 9

(b) is 134k IOPS. This thus verifies that if containers of
application having higher proportion of sequential writes is
operated simultaneously with containers of another applica-
tion performing random writes. Then the throughput of the
application performing random writes is scarified terribly with
respect to their standalone homogeneous operation throughput.

(a) (b)

Fig. 10: Heterogeneous: Simultaneous Cassandra (Cassan-
dra W workload) and FIO (128KB sequential write). (a)
Cassandra throughput, (b) FIO throughput

Second, we present the results of operating the Cassandra
containers simultaneously with FIO sequential write containers
in Figure 10. We see almost fair throughput throttle under these
two applications because containers of both these applications
are performing sequential writes. Figure 10, shows the result
of simultaneously operating Cassandra with FIO sequential
writes. The best throughput with standalone homogeneous FIO
sequential write instances is 6500 IOPS. From Figure 10, we
observe that the throughput of each application individually
degrades only by 10% to 15%. Thus as expected, we observe
fair throughput throttle.

(a) (b)

Fig. 11: Heterogeneous: Simultaneous Cassandra (Cassan-
dra W workload) and FIO (4KB random read workload). (a)
Cassandra throughput, (b) FIO throughput

Third, in order to investigate the behavior of simultane-
ously operating write intensive and read intensive application
containers, we show the results of Cassandra W containers
operating simultaneously with FIO random read containers in
Figure 11. The best throughput with standalone homogeneous
FIO random read instances is 450k IOPS. From Figure 11, we
observe that the throughput of both applications individually
degrades only by 10% to 15%. So, combining containers
of write-intensive and read-intensive applications can achieve
much better resource utilization and fair throughput distribu-
tion.

Thus, we summarize that the heterogeneous mix of contain-
ers of different applications leads to better utilization of overall

resources like CPU and disk. However, it is not advisable to
mix containers of applications that perform sequential writes
(or reads) and random writes (or reads), because the throughput
distribution as observed is unfair.

V. DESIGN IMPLICATIONS

In this session we provide the high level design guidelines
for homogeneous and heterogeneous containerized docker
platform. For homogeneous case, we particularly analyze the
behavior of write-intensive and read-intensive homogeneous
grouping of containers. We propose the following guidelines
to decide optimal number of simultaneously operating homo-
geneous containers.

• If application is write intensive then increasing number
of homogeneous containers till CPU gets saturated,
increases throughput.

• If application is read intensive and container size
is small such that majority of its operations can be
performed from page cache and memory, then it is
advisable to limit number of containers before falling
into throughput valley.

For heterogeneous case, we conclude that an effective
heterogeneous mix of containers of different applications leads
to better resource utilization and application throughput. Re-
garding the choice of good heterogeneous mix, we propose the
following guidelines.

• It is not advisable to mix containers of applications
that perform sequential writes (or reads) and random
writes (or reads), because the throughput distribution
as observed is unfair. In such a mix the throughput
of an application performing random writes (or reads)
may degrade drastically.

• Combining the containers of applications performing
similar operations (e.g., both have majority of sequen-
tial writes) leads to the fair throughput throttle be-
tween application containers compared to their respec-
tive standalone homogeneous operation throughput.

• Combining the containers of write intensive and read
intensive applications then we can achieve much better
resource utilization and attain fair throughput degra-
dation. In this case, despite of doubling the number
of simultaneous containers, the cumulative throughput
of each application only degrades around 10% when
compared to the standalone implementation of respec-
tive applications.

VI. CONCLUSION

In this paper, we investigated the performance effect of in-
creasing number of simultaneously operating docker containers
that are supported by docker data volume on a stripped logical
volume of multiple SSDs. We analyzed the throughput of
applications in homogeneous and heterogeneous environments.
We excavated the reason behind our interesting observations
and further verified them by using the FIO benchmark work-
loads. To best of our knowledge, this is the first research work
to characterize I/O intensive applications and explore important
phenomenon like throughput valley in a containerized docker

environment. Further more, our work shows that it is not
advisable to run simultaneously the containers of applications
that perform sequential writes (or reads) and random writes
(or reads). We finally presented some design guidelines that
are implicated from performance engineering carried out in
this paper. In the future, we plan to develop an automatic
scheduler for docker engine to effectively distribute and group
the simultaneous containerized instances of applications.

VII. ACKNOWLEDGEMENTS

This work was completed during Janki Bhimani’s in-
ternship at Samsung Semiconductor Inc., and was partially
supported by National Science Foundation Career Award CNS-
1452751 and AFOSR grant FA9550-14-1-0160.

REFERENCES

[1] Wikipedia, “Docker (software) — wikipedia - the free
encyclopedia,” 2016, [Online; accessed 12-July-2016]. [On-
line]. Available: {https://en.wikipedia.org/w/index.php?title=Docker
(software)&oldid=728586136}

[2] C. Anderson, “Docker.” IEEE Software, vol. 32, no. 3, 2015.

[3] P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and
C. Notredame, “The impact of docker containers on the performance
of genomic pipelines,” PeerJ, vol. 3, p. e1273, 2015.

[4] J. Fink, “Docker: a software as a service, operating system-level
virtualization framework,” Code4Lib Journal, vol. 25, 2014.

[5] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On. IEEE, 2015, pp. 171–172.

[6] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization
to support paas,” in Cloud Engineering (IC2E), 2014 IEEE International
Conference on. IEEE, 2014, pp. 610–614.

[7] A. Olbert, D. O’Neill, C. Neufeld et al., “Managing multiple virtual
machines,” 2003, uS Patent App. 10/413,440.

[8] M. Ronstrom and L. Thalmann, “MySQL cluster architecture overview,”
MySQL Technical White Paper, 2004.

[9] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim, “Per-
formance comparison analysis of linux container and virtual machine
for building cloud,” Advanced Science and Technology Letters, vol. 66,
pp. 105–111, 2014.

[10] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance Analysis of NVMe
SSDs and their Implication on Real World Databases,” in Proceedings

of SYSTOR, 2015.

[11] C. Boettiger, “An introduction to docker for reproducible research,”
ACM SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79,
2015.

[12] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A.
Lang, “SSD bufferpool extensions for database systems,” Proceedings

of the VLDB Endowment, vol. 3, no. 1-2, pp. 1435–1446, 2010.

[13] L.-P. Chang, “Hybrid solid-state disks: combining heterogeneous
NAND flash in large SSDs,” in 2008 Asia and South Pacific Design

Automation Conference. IEEE, 2008, pp. 428–433.

[14] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,
“Extending SSD lifetimes with disk-based write caches.” in FAST,
vol. 10, 2010, pp. 101–114.

[15] H. Jo, Y. Kwon, H. Kim, E. Seo, J. Lee, and S. Maeng, “SSD-
HDD-hybrid virtual disk in consolidated environments,” in European

Conference on Parallel Processing. Springer, 2009, pp. 375–384.

[16] T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang, “hStorage-DB:
heterogeneity-aware data management to exploit the full capability of
hybrid storage systems,” Proceedings of the VLDB Endowment, vol. 5,
no. 10, pp. 1076–1087, 2012.

[17] R. Chin and G. Wu, “Non-volatile memory data storage system with
reliability management,” May 25 2009, uS Patent App. 12/471,430.

[18] B. aDam LeVenthaL, “Flash storage memory,” Communications of the

ACM, vol. 51, no. 7, pp. 47–51, 2008.

[19] Y. Wang, K. Goda, M. Nakano, and M. Kitsuregawa, “Early experience
and evaluation of file systems on SSD with database applications,”
in Networking, Architecture and Storage (NAS), 2010 IEEE Fifth

International Conference on. IEEE, 2010, pp. 467–476.

[20] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating server storage to SSDs: analysis of tradeoffs,” in Proceed-

ings of the 4th ACM European conference on Computer systems. ACM,
2009, pp. 145–158.

[21] D. Schall, V. Hudlet, and T. Härder, “Enhancing energy efficiency of
database applications using SSDs,” in Proceedings of the Third C*
Conference on Computer Science and Software Engineering. ACM,
2010, pp. 1–9.

[22] S. Park and K. Shen, “A performance evaluation of scientific I/O work-
loads on flash-based SSDs,” in 2009 IEEE International Conference on

Cluster Computing and Workshops. IEEE, 2009, pp. 1–5.

[23] S. Boboila and P. Desnoyers, “Performance models of flash-based solid-
state drives for real workloads,” in 2011 IEEE 27th Symposium on Mass

Storage Systems and Technologies (MSST). IEEE, 2011, pp. 1–6.

[24] H. Fujii, K. Miyaji, K. Johguchi, K. Higuchi, C. Sun, and K. Takeuchi,
“x11 performance increase, x6. 9 endurance enhancement, 93% energy
reduction of 3D TSV-integrated hybrid ReRAM/MLC NAND SSDs by
data fragmentation suppression,” in 2012 symposium on VLSI circuits

(VLSIC). IEEE, 2012, pp. 134–135.

[25] T. Y. Kim, D. H. Kang, D. Lee, and Y. I. Eom, “Improving performance
by bridging the semantic gap between multi-queue SSD and I/O
virtualization framework,” in 2015 31st Symposium on Mass Storage

Systems and Technologies (MSST). IEEE, 2015, pp. 1–11.

[26] M. Hasenstein, “The logical volume manager (LVM),” White paper,
2001.

[27] G. Banga, I. Pratt, S. Crosby, V. Kapoor, K. Bondalapati, and
V. Dmitriev, “Approaches for efficient physical to virtual disk conver-
sion,” 2013, uS Patent App. 13/302,123.

[28] A. MySQL, “MySQL database server,” Internet WWW page, at URL:

http://www. mysql. com, 2004.

[29] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[30] Francois, W. Raab, A. Kohler, and Shah, MySQL TPC-C benchmark,
(accessed Septenber 6, 2016). [Online]. Available: http://www.tpc.org/
tpcc/detail.asp

[31] Cassandra-stress benchmark, (accessed Septenber 6, 2016). [Online].
Available: https://docs.datastax.com/en/cassandra/2.1/cassandra/tools/
toolsCStress t.html

[32] FIO - flexible I/O benchmark, (accessed Septenber 7, 2016). [Online].
Available: http://linux.die.net/man/1/fio

