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New Performance Modeling Methods for Parallel Data Processing Applications
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Predicting the performance of an application running on parallel computing platforms is increasingly becoming important because

of its influence on development time and resource management. However, predicting the performance with respect to parallel processes

is complex for iterative and multi-stage applications. This research proposes a performance approximation approach FiM to predict the

calculation time with FiM-Cal and communication time with FiM-Com, of an application running on a distributed framework. FiM-Cal

consists of two key components that are coupled with each other: 1) Stochastic Markov Model to capture non-deterministic runtime

that often depends on parallel resources, e.g., number of processes. 2) Machine Learning Model that extrapolates the parameters for

calibrating our Markov model when we have changes in application parameters such as dataset. Along with the parallel calculation

time, parallel computing platforms consume some data transfer time to communicate among different nodes. FiM-Com consists of a

simulation queuing model to quickly estimate communication time. Our new modeling approach considers different design choices

along multiple dimensions, namely (i) process-level parallelism, (ii) distribution of cores on multi-processor platform, (iii) application

related parameters, and (iv) characteristics of datasets. The major contribution of our prediction approach is that FiM can provide

an accurate prediction of parallel processing time for the datasets which have a much larger size than that of the training datasets.

We evaluate our approach with NAS Parallel Benchmarks and real iterative data processing applications. We compare the predicted

results (e.g., end-to-end execution time) with actual experimental measurements on a real distributed platform. We also compare our

work with an existing prediction technique based on machine learning. We rank the number of processes according to the actual and

predicted results from FiM and calculate the correlation between the actual and predicted rankings. Our results show that FiM obtains

a high correlation in the range of 0.80 to 0.99, which indicates considerable accuracy of our technique. Such prediction provides data

analysts a useful insight of optimal configuration of parallel resources (e.g., number of processes and number of cores) and also helps

system designers to investigate the impact of changes in application parameters on system performance.
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(a) (b)

Fig. 1. Latency variation across different number of parallel processes for (a) calculation time, and (b) communication time

1 INTRODUCTION

High-Performance Computing (HPC) systems are ubiquitous in processing data for myriad applications involving 
huge datasets. How to achieve the best performance with an optimal configuration of parallel resources (e.g., number 
of processes and number of cores) is a challenging research problem. Currently, researchers run their application 
codes on a representative dataset, fix application parameters, and try different configurations of parallel resources to 
determine the optimal one. However, if we want to find optimal application parameters, then the investigation needs to 
consider all possible combinations of application parameters and parallel resources. Such an investigation becomes very 
expensive, requiring a significant amount of time and hardware resources. Besides, on parallel computing platforms, 
using more parallel resources does not always guarantee performance improvement. Hence, it is beneficial if we can 
approximate the optimal performance in terms of parallel resources and application parameters. The prediction of 
expected performance before the porting of an actual implementation on a hardware platform can save significant time 
and hardware resources spent in experimentally finding the optimal performance. The emergence of huge datasets as 
workloads and parallel computing has emphasized the importance of predictive analysis, and performance bottleneck 
identification. Designing efficient prediction tools thus becomes critically important to system designers and application 
programmers [24].

As motivation, we show an example with an iterative K-means clustering application running on a framework 
using Message Passing Protocol (MPI [19; 35]) in Fig. 1. We observe that the calculation time decreases when we have 
more parallel Message Passing Interface (MPI) processes; however, the time to communicate data increases. Such an 
observation implies that speeding up parallel calculation time may not guarantee overall application speed-up. Also, 
the decrease in calculation time levels off after 70 parallel processes. Increasing the number of parallel processes further 
consumes more system resources, but may not improve overall application runtime. Thus, the capability of predicting 
such an optimal point (e.g., 70 in Fig. 1) is vital to system designers for making good design choices.

In this paper, we develop a new performance modeling approach, named FiM, to estimate both computation and 
communication times of iterative, multi-stage data processing applications using MPI. Each node is a CPU which has 
multiple cores, and each core can support multiple MPI processes. One of the nodes accesses an application dataset 
and determines the distribution of processing among the processes of other nodes. All these nodes then perform 
parallel computations using multiple processes. Such a parallel phase is known as one stage in our model. At the 
end of each stage, all processes synchronize to decide on the termination or launch next stage. In this research, we 
concentrate on predicting parallel processing time of such an iterative and multi-staged application running with global 
synchronizations. One of the key innovations in our work is that FiM relies only on small datasets for training but can 
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predict the execution times for larger datasets. More specifically, this paper aims to answer the following questions

through our prediction models.

• Can we quickly estimate the parallel calculation and communication times of an application to identify the

optimal number of processes?

• Can we use small datasets as training to predict performance of applications operating in parallel on large

datasets?

• How does the number of processes impact calculation and communication time?

• Is the application communication or compute bound?

To answer these questions, we introduce FiM which consists of two main components: (1) FiM-Cal, and (2) FiM-Com.

The goal of FiM-Cal is to predict the calculation time by using a stochastic Markov model and a machine learning

model. The stochastic Markov model is built using the probabilistic technique to estimate the impact of an increase

in the number of parallel processes. We first develop the base case of the parallel paradigm and then derive a generic

model that applies to any number of parallel processes as well as any number of dependent stages (e.g., iterations) of an

application. The base case of the Markov model is calibrated using the minimum number of system parameters. The

machine learning model is then designed to extrapolate the calibrated parameters for the Stochastic Markov model to

adapt to changes in application parameters such as datasets.

The goal of FiM-Com is to predict the communication time using a set of simulation queuing models. Here our

motive is to get a quick estimate using a simplified prediction model. Such an estimate of communication time along

with calculation time can provide instant insight to users. Thus, our FiM approach can use the minimum possible

calibration parameters to quickly predict the expected computation and communication time as well as the optimal

number of processes for platform configuration. While comparing actual and predicted time, the worst prediction

error of the overall application runtime by FiM is observed to be less than 20%. The source code of our calculation and

communication time prediction model is available at GitHub (https://github.com/bhimanijanki/FiM)

The remainder of this paper is organized as follows. We present the two FiM components in Section 2 and Section 3.2,

respectively. We evaluate our models on a distributed memory platform, see Section 4. In Section 6, we discuss some

related work. Section 7 presents our conclusions and future works.

2 FIM-CAL: CALCULATION PREDICTION

In this section, we present FiM-Cal, an analytical approach to predicting the calculation time of an application

running on a distributed multi-process platform. FiM-Cal consists of two key components: a stochastic Markov model

and a machine learning model. We first use the stochastic Markov model to represent the computational processing of

an application in a parallel MPI framework. Then we design a machine learning algorithm to estimate the parameters

related to the system for calibrating our stochastic Markov model. This parameter extrapolation enables our model to

predict an application’s calculation time when we have a different number of parallel processes or variable application

parameters (such as dataset size) without any system state instrumentation. Table 1 lists the notations used in this

paper for FiM-Cal. Fig. 2 shows the overall workflow of our proposed FiM-Cal. We will introduce the details of each

component in Fig. 2 in the remainder of this section.



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Bhimani, J. et al

Fig. 2. Prediction procedure of FiM-Cal

Table 1. Notations used in FiM-Cal

Notation Description

Sij Markov chain state with i active and j

passive processes

Psi Stage completion probability of ith stage

Pi j State transition probability of moving from i
active to j active processes

Pact Probability P11 of 1 process model

Pp2a Probability P01 of 1 process model

Pa2p Probability P10 of 1 process model

Ppass Probability P00 of 1 process model

F Frequency (GHz)

TC Total cycles

SC Total stall cycles

U Utilization per process

Ti Total time taken by stage i

α Sensitivity constant

β Regression constant

yi Dependent variables

X⃗i Vector of independent variables

2.1 Stochastic Markov Model

Our stochastic Markov model is designed to model computational processing for an application running on a system 
with parallel multi-core CPUs deployed using MPI. Such a stochastic model allows us to capture a non-deterministic 
runtime that often depends on parallel resources, e.g., number of processes. If there exists a global synchronization 
call in an application, then all processes wait until the barrier. The processing of an application is partitioned into 
multiple stages with respect to this global synchronization, such that each stage corresponds to a parallel phase until all 
processes have completed their tasks and are in an active state to proceed to the next stage. In this section, we first 
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introduce our base case which models a single stage for a single-process system and then show its extension to the

generic case with multiple processes and multiple stages.

Fig. 3. Modeling (a) Base Case: single process with single stage, (b) Generic Case: two processes with multiple stages

2.1.1 Base Case. The base case model is built to represent a single process for a single stage application, see Fig. 3 (a).

In our model, each process is considered to be either in active or passive state. As shown in Fig. 3(a), when only a single

process runs in the computing platform, we have two states for a stage such that state S1
0
represents that one process is

active while S0
1
represents that one process is passive. We also introduce transition probabilities (e.g., Pact , Pa2p , Ppass ,

Pp2a ) of switching between two states or staying in the same state, as well as the stage completion probability (Ps1)

of transferring from one stage to another. In the active state, the process performs constructive work and typically

changes from the active state to the passive state when it is blocked by an event that would create a latency stall. Such

a latency stall might be caused due to a cache miss that takes many CPU cycles. In this work, we do not model memory

latencies, contentions, inter-dependencies and deadlocks individually for each process but rather treat the combined

effect as a process remaining passive.

The probabilities in the base case model are parameterized by instrumenting the system details, which is further

used to derive the probabilities of the generic case. In order to parameterize the probabilities of the base case, we use

the perf tool [16] to instrument the required data, including the hardware clock rate (F ), system CPU utilization

factor per process (U ), total number of cycles required for execution (TC) and stall cycles (SC). In particular, we run an

application with a single stage on a single process and use the perf stat command to collect and report the required data

as listed above.

In the base case (i.e., single-process and single-stage), the probability to remain in the active state (Pact ) is primarily

determined by the proportion of time that the process is performing useful work. Therefore, we use Eq. 1 to get Pact ,

Pact = U (1)

where U is utilization per process. As shown in Fig. 3 (a), when the process is in an active state (i.e., S
0

1
), there are three 

possible events for its next transition: (1) remain in S
0

1 
with probability Pact , (2) transition to with probability Pa2p ,

and (3) complete the stage with probability Ps1. Now, if there are TC total cycles to be processed for the given dataset, 
then processing is completed only after completing the last cycle. This gives the probability of completion as 1/TC.  
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Probability Pa2p for the process to transit to the passive state can then be calculated as shown in Eq. 2.

Pa2p = 1 − (Pact ) − (1/TC ) (2)

The probability of the process remaining passive (Ppass ) is primarily determined by the ratio of stall cycles (SC) to

total cycles (TC) as shown in Eq. 3.

Ppass = SC/TC (3)

We can determine the probability of switching from passive to active (Pp2a ) by applying the control flow equation to

the passive state (S0
1
) as shown in Eq. 4.

Pp2a = 1 − (Ppass ) (4)

We finally get the stage completion probability (Ps1) by applying the control flow equation to the active state (S1
0
) as

shown in Eq. 5.

Ps1 = 1 − (Pact ) − (Pa2p ) (5)

Note that, for the base case with one stage and only one possible active phase, Ps1 is the same as 1/TC because all

active cycles can be spent only in one active state (S1
0
). Later, in generic cases, we discuss the calculation of Ps1, which

is then not the same as 1/TC .

2.1.2 Generic Cases. Now, we consider generic cases where we can have multiple processes operating on an

application with multiple stages. This generic behavior can be modeled as an extension of the base case. The processing

of an application may have multiple inter-dependent parallel stages. For example, an iterative application with 500

iterations can be divided into 500 parallel stages such that each stage represents an iteration and is entered only after

the completion of all prior stages. Thus, the first stage corresponds to the parallel calculation phase by all processes

in the first iteration and is followed by the remaining stages in the same order. In general a simple non-iterative and

single stage application can be treated as having 1 iteration and 1 stage while predicting its runtime using our proposed

technique.

Fig. 3 (b) shows an underlying Markov model for an application with two processes using n stages, each with 2

parallel processes. The entire workflow of an iterative, multi-stage, multi-process application can be mapped with a

chain of n parallel stages, and Ps1, Ps2,..., Psn , are the completion probabilities for all n stages, see Fig. 3 (b). Note that

these stage completion probabilities are non-uniform and dependent on all the completion probabilities of prior stages

as well as intra-state transition probabilities of that stage. Also for every stage, all its state transition probabilities (Pi j )

depend on the completion probability of the prior stage. Thus, the value of Pi j in a stage is different from that of Pi j in

another stage even for the same i and j. Furthermore, a single stage can only complete when all of its processes are

active, i.e., not being blocked by any events. A calculation phase of an application is completed when tasks assigned to

all processes are completed in the last stage. Thus, the completion probability of an application is Psn .

To model an iterative, multi-stage paradigm with multiple processes, we use multiple states within each stage

to represent activities (active or passive) of all processes. Consider t processes with i active processes and j passive

processes, where 0 <= i <= t , 0 <= j <= t and t = i + j. Each stage consists of a total of M = t + 1 states. Thus,

the transition probabilities of jumping from any one of these M states to other states or itself can be divided into 3

types: 1) probability to remain in the same state (e.g., P22, P11 and P00 in Fig. 3 (b)), 2) probability to increase active

processes (e.g., P01, P12, P02 in Fig. 3 (b)), and 3) probability to increase passive processes (P10, P21, P20 in Fig. 3 (b)).

GivenM states, we haveM probabilities to remain in the same state,

∑M−1
i=1 i probabilities to increase active processes,
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and

∑M−1
i=1 i probabilities to increase passive processes. Thus, the total number of probabilities to be calculated for a

single stage withM states is equal toM + 2
∑M−1
i=1 i =M2

.

2.1.3 Solving the Generic Model. We solve such a generic Markov model and derive its probabilities by relating

them to the preliminary transition probabilities of the base case. That is, once we have transition probabilities forM = 2

(base case), we can calculate all probabilities for a generic case withM > 2. In [27], a mathematical relation between

the transition probabilities of a Markov model with two states and a Markov model with more than two states has been

derived. We use their method to relate transition probabilities of the cases with M = 2 andM > 2. Initially, base case

probabilities are calculated.

Specifically, let us consider to derive generic model probabilities for an application withM = 3 from the base case

probabilities ofM = 2. ForM = 3, the application must have two parallel processes (see Fig. 3 (b)). At any given time

during the execution, there are three states (M = 3): 1) both these processes can be active (state S2
0
), 2) one process

can be active and the other passive (state S1
1
), 3) both can be passive (state S0

2
). The probability of 2 active processes to

continue as active is P22 = Pact * Pact . Similarly, the probability of 2 passive processes to continue as passive is P00 =

Ppass * Ppass . If one process that was active in previous stage remains active and the other process that was passive

remains passive, or if the active process becomes passive and the other process that was passive becomes active, then in

both of the above cases the model stays in state S1
1
. Thus, the probability of such state transition is P11 = (Pact * Ppass )

+ (Pa2p * Pp2a ). P01 is state transition probability from S0
2
(i.e., both the passive processes) to S1

1
(i.e., one active process

and the other passive process).

Same as above, the state transition probabilities for anyM can be derived. These derived equations can be mathemat-

ically reduced to a more generic form. Eq.s 6 to 8 give the state transition probabilities for M > 2, where i corresponds

to the number of active processes in the previous state and j corresponds to the number of active processes in the

targeted state. For example, in Fig. 3 (b), P21 indicates the state transition probability of moving from a state with 2

active processes (S2
0
) to a state with 1 active process (S1

1
). Substituting appropriate i and j in Eq.s 6 to 8 forM = 3, all the

probabilities explained and derived above for 2 processes such as P00, P11, P22, P01, P02, P12, P10, P20 and P21 can be

obtained. These equations represent the stochastic process of a Markov chain and can be calculated by mathematical

induction after solving the Markov chain with a finite number of states. Particularly, as shown in Eq.s 6 to 8, we use the

probabilities (Pact , Pa2p , Ppass and Pp2a ) that are obtained by the base case (Sec. 2.1.1) to calculate the state transition

probabilities in generic cases.

If i == j,

Pii (t ) =

min {i,t−i }∑
k=0

(
i

k

)
.

(
t − i

t − i − k

)
.(P i−kact ).(P

k
a2p ).(P

t−i−k
pass ).(Pkp2a ) (6)

If i < j,

Pi j (t ) =

min {i,t−j }∑
k=0

(
i

k

)
.

(
t − i

t − j − k

)
.(P i−kact ).(P

k
a2p ).(P

t−j−k
pass ).(P

j−i+k
p2a ) (7)

If i > j,

Pi j (t ) =

min {j,t−i }∑
k=0

(
i

i − j + k

)
.

(
t − i

t − i − k

)
.(P

j−k
act ).(P

i−j+k
a2p ).(P t−i−kpass ).(Pkp2a ) (8)

Additionally, after capturing the state transition probabilities of the first stage, we calculate the stage completion 
probability Ps1 using Eq. 9 and then use Ps1 as an incoming probability for calculating the state transition probabilities 

of stage 2, and so on. This chaining process captures an iterative and multi-stage application running with multiple 
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processes. Finally, Psn for the nth stage is calculated by Eq. 9.

Psn = P (Xs = n | Xs−1 = n − 1)

= 1 −

j=i∑
j=0

(Pi j | Xs−1 = n − 1)

f or i = Max (#Processes )

(9)

We further use Eq. 10 to calculate the time (Tn ) spent in performing parallel calculation for n stages, given the

completion probability (Psn ) and CPU frequency (F ).

Tn =
1

(Psn ).(F )
(10)

Consequently, our stochastic Markov model can predict the computation time required to process any particular dataset 
using different levels of parallelism such as different number of processes in MPI. Next, we present our machine learning 
technique which assists to extrapolate the data (such as, F , U , TC and SC) required for calibrating the base case model.

2.2 Machine Learning Model

Our stochastic Markov model allows us to predict the calculation time of an application when we have a different 
number of processes in the system. However, the required hardware parameters (i.e., TC , SC , U ) need to be instrumented 
for every new dataset and a new setting of application parameters. This limits the scope of the model to predict for a 
particular set of datasets and fixed application parameters. Most analytical models suffer from this lack of flexibility. 
Therefore, we develop our machine learning model to avoid additional instrumentation for a new dataset or a new 
set of application parameters. For a new application, we need first to train to derive a new model. However, for new 
sets of application parameters and new datasets of the same application, the derived model can be used to predict the 
runtime. To reduce the complexity of the machine learning model, we also assume that the application calculation time 
is dependent on the fewest possible hardware parameters. Our evaluation results are shown in Section 4 demonstrate 
the feasibility of this assumption by showing the fairly accurately predicted results obtained by our approach which is 
good to give a quick approximation. Here, we introduce a two-stage machine learning model that emulates hardware 
behaviors without performing actual instrumentation for required hardware-related data. Such a hybrid emulation of 
hardware is the key to allowing the approach to be able to predict parameters for datasets with sizes much larger than 
those of the training datasets.

2.2.1 Regression Mapping. The focus of regression is to find the relationship between a dependent variable (such 
as the hardware parameters which we want to emulate) and one or more independent variables (such as application 
parameters and datasets). This analysis estimates the conditional expectation of a dependent variable given values of all 
related independent variables. We find that the generalized linear regression model performs the best when compared 
to others (quadratic, Poisson model, and gradient decent) for modeling all desired hardware parameters (U , TC and SC). 
We show the validation of a linear regression model in Sec.4.3.

The linear regression equation for learning variable yi is shown in Eq. 11, where X⃗i is a vector of p independent 

variables related to application parameters and datasets, β⃗i consists of a vector of p + 1 constants, and n is total number 

of scalar dependent variables. Suppose for the K-means application, elements of X⃗i would consist of the number of 

desired clusters (K), the number of iterations (I) and size (N). For our model, we have three scalar dependent variables, 
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i.e.,U ,TC and SC , which can be predicted after building this linear regression model. Thus, we have three equations for

y1, y2 and y3 with n = 3.

yi = βi0 + βi1xi1 + ... + βipxip

= β⃗i (1 + X⃗i
T
), f or i = 1, 2, ...,n

(11)

This linear regression model is used to find values for constants β⃗i using the training data for which both dependent

variables and independent variables are known. We obtain the regression curve and regression constants β⃗i by building

our machine learning model in MATLAB.

Algorithm 1: Calibration of α

1 Input: ϵ , τ yi , X⃗i , Output: α
2 Initialize: β⃗i , TC , SC ,U using regression mapping, α = 0 and iter = 0

3 if 0 <= U <= 1, TC >0, SC >0, SC <TC then
4 Predict comp. time using stochastic Markov model

5 Calculate RMS error (Actual, Predicted)

6 if iter == 0 then
7 Calculate error (Actual - Predicted)

8 Decide OP = + or -, depending on positive or negative error

9 if RMS error <τ then
10 return
11 else
12 α = α {OP} ϵ

13 iter ++

14 Calculate TC, SC and U using Eq. 12

15 goto line 3

16 else
17 Neglect bad values

18 goto line 4

2.2.2 Iterative Improvement Model. We found non-negligible errors between the actual and predicted calculation

times when we pair the linear regression model described above with our stochastic Markov model, to predict calculation

time of large datasets based on small training datasets. To handle this issue, we develop an iterative improvement model

which uses a sensitivity parameter α to tune the constant factors β⃗i with respect to the predicted results (i.e., calculation

time) of our stochastic Markov model as shown in Eq. 12. Note that in this equation the constants in vector β⃗i are

obtained from the regression between hardware parameters and application parameters, but constant α is obtained by

using both Markov model and regression model as described in Algorithm 1.

yi = α (βi0 + βi1xi1 + ... + βipxip )

f or i = 1, 2, ...,n
(12)

Initially, we use hardware parameters (U , TC and SC) and application parameters of training data with regression

mapping (Eq. 11) to obtain constants of vector β⃗i . The hardware parameters are passed to our stochastic Markov model 
to predict calculation time. In the first iteration, the error between actual and predicted time is used to decide the adjust 
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direction of α , see lines 6 to 8. That is, if the actual value is greater than the predicted one, then the algorithm increases 
α and vice versa. In the following iterations, Algorithm 1 increases or decreases α by a small value ϵ (e.g., ϵ = 1e-5) 
and the hardware parameters (U , TC and SC) are predicted using constants of vector β⃗i and α with Eq. 12 (see line 
14). Then the computation time is predicted using U , TC and SC as the inputs to our stochastic Markov model (see 
line 4). The adjustment process continues until the root mean square (RMS) error becomes smaller than a predefined 
threshold (e.g., τ = 0.01), see line 9. The value of τ needs to be set such that we avoid underfitting as well as overfitting 
the training data. From our experiments, we observe that τ = 0.01 is a good value on an average across different choices 
of applications and training datasets. Thus, the algorithm adjusts the value of α until the predicted calculation time 
becomes close to the actual time. We tune α while training the model and then use the exact tuned α value throughout 
the prediction stage. Note that our machine learning model is used to calculate the constants of vector β⃗i and α in the 
training phase, which are after that used for extrapolation of hardware parameters.

In summary, Fig. 2 shows the overall procedure of our prediction model FiM-Cal, which includes the training and 
prediction phases. In the prediction phase, our machine learning model extrapolates the dependent variables (such as 
hardware parameters - SC , TC , U ) for new datasets and new sets of application parameters. These predicted hardware 
details can then be used as an input to our stochastic Markov model to predict the calculation time.

3 FIM-COM: COMMUNICATION PREDICTION

Apart from computation time [7; 8], applications spend some time in the communication of data to various processes. 
With the increase in the number of processes, this communication time keeps increasing [37]. Therefore, it is essential 
to roughly estimate communication time, i.e., the runtime of data transfer. For applications running on a distributed 
multi-process system, the data transfer time for processes lying on the same node is different from that between 
processes lying on different nodes. The framework considered in this work consider all inter-node communication.

3.1 Communication Patterns

It is non-trivial to predict communication time, due to various communication patterns and the non-deterministic 
latency of the communication network. There exist many, more complex models to predict accurate network commu-

nication time [10; 20; 23; 30], but here our motive is to get a quick estimate using a simplified prediction model. In 
this work, we investigate three types of collective communication patterns including downlink (scatter and broadcast) 
and uplink (gather). We build different queuing models to capture those patterns when running a data processing 
application such as K-means clustering on a multi-process system with MPI. Because the data transfer time along with 
computation time is significant, our model aims to provide very quick rough estimates of communication time to make 
fast decisions.

Specifically, we consider communications from the one to many nodes as the downlink. Such a downlink communi-

cation can have either the scatter pattern or the broadcast pattern. Under the scatter pattern, the data is distributed 
among the multiple nodes by the one node such that each node gets a unique part of the data. Under the broadcast 
pattern, the data is broadcast to all nodes, and each node receives the same copy of the data. The scatter communication 
is usually undertaken by communicating data to one after another process in MPI. We also consider communications 
from multiple nodes to the one node as the uplink gather pattern. When gathering, each node sends their own data to a 
shared buffer, and the managing node reads those data one-by-one from the buffer.
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Fig. 4. Queuing models for the (a) scatter, (b) broadcast, (c) gather communication patterns

3.2 Communication Models

We develop a set of queuing models to capture these three collective communication patterns. Such queuing models

can give a high-level abstraction of real communication systems in terms of packet arrival rates, delay/waiting time

and packet transfer rate, which helps to estimate the overall data communication time. Note that we try to keep these

queuing models simple to enable fast estimation.

Fig. 4 presents our queuing models to represent the scatter, broadcast and gather patterns, respectively. Typically,

communication time depends on various network properties such as initialization cost, maximum network bandwidth,

network load and the amount of metadata (e.g., headers, acknowledgments, and flags). Therefore, in each of these

models, we use four components, Data transfer (D), Metadata (M), Cost of network initialization (C) and Receive (R)

in Fig. 4, in series to capture different properties of network communication. Each job in the queue of D, M, C and R

represents a data packet e.g., a pixel for K-means clustering.

First, D is used to capture the actual data transfer rate through the communication network, where mean service rate

µ1 indicates the available network bandwidth. We assume that all data packets are available in memory. Thus, all jobs

are assumed to wait in the queue of part D before data transfer begins.
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The second part M, in the models of Fig. 4 captures the effect of metadata on overall communication time. Such

metadata can include headers, acknowledgments, addresses, offsets, padding and flags that need to be transferred over

the network along with the original data packets as part of the network protocol. The time consumed by such metadata

transfers depends on the number of actual data packets and instantaneous network load. To capture this, we design

component M with a variable mean service rate µ̃2, which depends on the instantaneous queue length of part M. The

arrivals to this queue are the departures from part D.

Part C in the model represents network initialization. Usually, the cost for network initialization is a network latency

that is added to overall communication time. We use a delay server with mean service rate µ3 to emulate such network

latency. The last part of our models (R in Fig. 4) is used to estimate the data fetching time on the receiver side. We use

part R to capture the receiving, while the first three parts (D, M and C) capture the sending. We assume that the receiving

process is homogeneous across different nodes. Therefore, multiple servers and queues are used to represent multiple

receivers, and the mean service rate of each server is µ4.

We present the corresponding models for scatter and broadcast in Fig. 4 (a) and (b), to predict communication times

for the downlink, i.e., from the one node to multiple nodes. Under the scatter pattern, the one node sends different

pieces of data to other nodes one-by-one. We use the round robin policy to distribute jobs into queues in part R, and

thus there is only one solid arrow in R to indicate data transfer to one process at a time, see Fig. 4 (a). In Fig. 4 (b), there

are multiple solid arrows to R, which represents that we duplicate jobs (data points) and distribute them to all queues of

R in parallel, to capture the broadcast pattern. The third model, shown in Fig. 4 (c), represents the gather pattern of the

uplink communication, where multiple nodes send their data to one node. We have multiple servers running in parallel

in parts D, M and C. The First-In-First-Out (FIFO) discipline is used in the last queue to emulate data fetching by the

managing node.

3.3 Communication Model Calibration

The main tasks in communication model calibration are 1) to determine an appropriate queuing model, and 2) to

derive service processes for all servers in the model based on its collective communication pattern. Our models only

need to be calibrated when we have a new application or run on a new hardware platform. We then leverage the

knowledge of actual transfer processes on a new platform to calibrate the service rates of all servers in the models. The

calibrated models can be used directly to predict communication times for new datasets, new application parameters

(e.g., number of iterations in K-means) and different number of MPI processes.

In particular, we calibrate µ1 using the maximum network bandwidth obtained from the provided network config-

uration of a cluster (e.g., 10 Gb/s backplane). We observe from conducting experiments on multiple applications for

both 10 Gb/s and faster 56Gb/s TCP/IP backplane that the actual data transfer rates are often within 90% to 100% of the

maximum network bandwidth, with a uniform distribution. Therefore, we calculate the lower bound (ζmin ) and the

upper bound (ζmax ) of transfer rate per unit job (i.e., each data point) and derive the service rate µ1 in part D using

Eq. 13.

µ1 = Uni f orm(ζmin , ζmax ) (13)

To get the transfer time of the metadata, we first measure the actual total communication time for sending a unit job 
(a single data point) and then deduct the measured runtime of the other three parts, i.e., network bandwidth, network 
initialization, and receiver’s data fetch time. We find that the derived transfer rates of metadata are logarithmic to the 
instantaneous network load (refer Section 4.3). Therefore, we use Eq. 14 to generate µ̃2 for metadata where χ represents 
the number of jobs currently waiting in the queue of M. The tilde on µ2 represents the variable mean service rate of 
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component M, which depends on the instantaneous queue length of part M (χ ) to symbolize variance as explained above.

µ̃2 = loд(χ ) (14)

In part C, µ3 captures the network initialization latency using a delay server. Specifically, the sending node first

activates itself (comselfcreate) and then activates the receiving nodes (comworldcreate). The MPE tool [19] is used

to collect the mpilog log files. We observe that the initialization latency follows an exponential distribution (refer

Section 4.3). Thus, we use Eq. 15 to get the service rate µ3, where η is the mean of the service rate distribution.

µ3 = exp (η) (15)

Finally, we observe that the data receiving rate is exponentially distributed (refer Section 4.3). Additionally, we

consider a multiplicative factor ϕ to model the number of receivers that simultaneously fetch data. For example, ϕ is

equal to one under the scatter pattern since only one node can receive data at any time. For the broadcast pattern, ϕ is

equal to the number of nodes. Thus, Eq. 16 is used to draw µ4 for all the servers in part R, whereψ is the mean service

rate distribution.

µ4 = ϕ ∗ exp (ψ ) (16)

4 EVALUATION

Table 2. Platform configurations labelled as C1 to C5 (2-E52670 - Two multi-core, hyper-threaded Intel Xeon E5 2670 CPU’s @ 2.60
GHz and 256 GByte of RAM) (2-E52650 - Two multi-core, hyper-threaded Intel Xeon E5 2650 CPU’s @ 2.00 GHz and 128 GByte of
RAM)

C1 C2 C3 C4 C5

CPU 2-E52670 2-E52670 2-E52670 2-E52670 2-E52670

2-E52650 4-E52650 6-E52650 8-E52650

Cores 32 64 96 128 160

Network 10 Gb/s Ethernet backplane TCP/IP

Shared FS NFS

OS Linux

We evaluate our FiM prediction approach (a combination of FiM-Cal and FiM-Com), by comparing the predicted

results (e.g., end-to-end execution time) with actual experimental measurements on a real distributed platform. We also

compare our prediction approach with an existing work, named RBASP [5], which is a regression-based approach to

extrapolate execution time. In our evaluation, we consider the end-to-end execution time of data processing applications

as the sum of the runtime spent in communicating the required data to parallel processing units, performing the

calculations in parallel, and transferring the results back to the managing node. We assume that no overlap exists

between the calculation and communication in the application implementation. We use the Discovery Cluster at

Northeastern University [1] to build our experimental platform. Table 2 describes five parallel platform configurations

we used in our evaluation, where each CPU belongs to different nodes.

We evaluate our approach with six NAS Parallel Benchmarks (NPB - version NPB3.3.1-MPI ) [2], with the large size

dataset of Problem Class C. Table 3 lists the six benchmarks we used in our evaluation. For each benchmark, we train our

model using three small size datasets of Problem Class S. Note that we use the trained model to predict the performance

for datasets of Problem Class C which are much larger than the datasets of Problem Class S. We reprogram the NPB

benchmarks to implement iterative, multi-stage paradigm versions in MPI using C. The time spent for computation in

all iterations (or multiple phases) is the total computation time. For each iteration, we measure the time from the start
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Table 3. NPB Benchmarks

BT Block Tri-diagonal solver Compute Bound

EP Embarrassingly Parallel Compute Bound

SP Scalar Penta-diagonal solver I/O Bound

LU Lower-Upper Gauss-Seidel solver I/O Bound

IS Integer Sort Memory Bound

CG Conjugate Gradient Memory Bound

of parallel processes to the completion of all the processes. We also evaluate FiM with two iterative data processing

applications: K-means [6] and Pagerank. For each of these applications, we run experiments on 15 different datasets

and choose one dataset as a representative to show the results, i.e., NL (the large dataset with 13 million data points).

For both applications, we train our model using three small datasets, i.e., NS (the small datasets each with 3 thousand

data points).

K-means Clustering (KM): Our K-means clustering implementation [6] takes color images as input datasets. We

cluster pixels in an image based on five features, including three RGB channels and the position (x, y) of each pixel.

We choose random data points to initialize each cluster centroid and then use the Euclidean distance to calculate the

nearest cluster for each data point. The parameters of K-means include a number of desired clusters (K), number of

iterations (I ), and size of input dataset (N ).

Pagerank (PR): The Pagerank application takes a network of directed vertexes and edges as an input dataset. The

output of the Pagerank application is a probability distribution representing the weights of each vertex (page). We

choose a damping factor of 0.85 and initialize all vertices (pages) with the same probability weights. The parameters of

this application include a number of vertexes (V ), number of iterations (I ), size of input dataset (N ) and network nature

(dense or sparse).

4.1 Performance Evaluation

In our evaluation, we consider a regression-based approach named RBASP [5] to compare with our FiM approach.

RBASP is well known for its simplicity and accuracy in extrapolating execution time of multi-process applications. In

our FiM approach, we combine our stochastic Markov modeling with machine learning regression to predict calculation

time and use our queueing models to predict communication time. Our prediction model with this combination of

popular techniques helps to predict accurately in most cases and gives a quick estimation. We choose RBASP to compare

our prediction accuracy because similar to FiM, it also gives a quick prediction and can estimate runtime of datasets

larger than the training datasets. RBASP is a pure regression-based approach, unlike FiM it directly estimates total

time (calculation + communication) using regression. RBASP model predicts the execution time (y) of a given parallel

application on p processes by using several instrumented runs of an application on q processes, where q ∈ {1, ...,p0}

and p0 < p. By varying the values of independent variables (x1,x2, ...,xn ), this model aims to calculate coefficients

(β0, ..., βn ) by the linear regression fit for loд2 (y) (Eq. 17), where д(q) can be either a linear function or a quadratic

function.

loд2 (y) = β0 + β1x1 + ... + βnxn + д(q) (17)

While reproducing the RBASP model, we use p0 = 1, 2, 4 as the training set and predict the performance with two 
forms of д(q) function as suggested in [5]. The RBASP approach directly predicts the execution time using regression, 
which requires performing training with data points processed for a different number of multiple processes. In contrast, 
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FiM extrapolates the hardware parameters for a given computing platform and then uses these hardware parameters as

the inputs to the stochastic Markov model for predicting execution time for a different number of processes. FiM does

not need to be trained again when we change the number of processes used in a given computing platform.
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Fig. 5. Actual and predicted execution time using FiM and RBASP with the relative prediction error listed on top of each bar

Fig. 5 shows the predicted results using RBASP and FiM for six NPB benchmarks and two iterative data processing

applications. We run these experiments on the C5 platform (see its configuration in Table 2), using the actual optimal

number of processes listed in Table 4. As shown in Fig. 5, our FiM approach achieves a pretty good agreement between

the predicted and actual results across all the six benchmarks and two applications. We also observe that RBASP has

lower relative prediction error than FiM for only BT and EP. Both BT and EP are compute-intensive benchmarks, so a

pure regression technique is sufficient to predict their execution time. However, prediction using only regression is not

good enough for I/O and memory intensive applications as observed from RBASP prediction results in Fig. 5 for the rest

of the applications. As shown in Fig. 5, for all the remaining benchmarks and applications, FiM performs better. Many

real-time applications are I/O or memory intensive, for whom simple regression model is not sufficient to give accurate

predictions. For the results shown in Fig. 5, the calculation time reported includes all background delay that occurs

due to I/O latency to access the data that is required to perform the computations. The time required for data transfer

among different parallel processes is communication time. We also observe that the prediction error of FiM remains

less than 20% for individual prediction of calculation time and communication time. Furthermore, RBASP’s prediction

is limited to the fixed application parameters on which the model is trained because if the application parameters are

changed, then RBASP needs to be re-trained. In contrast, FiM can predict execution time without any prior training for

new application parameters because we do not regress the execution time directly, but instead, we train our model to

learn the change in system counters like total cycles, and stalled cycles when application parameters are changed. Thus,

this also advanced our approach to avoid over-fitting to the execution time of the training datasets.

Table 4 lists the best, average and worst prediction errors as well as the actual and predicted optimal numbers of

processes using RBASP and FiM. Apart from having a lower average error, also having a tight prediction error range is

important for these prediction approaches because such a range can be used to provide a quick approximation before

conducting actual experiments. We observe that FiM has a relatively tight prediction error range from the best to the

worst, compared to RBASP. Despite the lower prediction error under the best case, RBASP obtains higher prediction

errors in the worst case for all benchmarks and applications. This is because the pure regression model used in RBASP
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Table 4. Summary of results for all applications (Rel. Er.-Relative Error) (Act.-Actual) (App.-Application) (Opt.-Optimal)

Best Rel. Er. % Average Rel. Er. % Worst Rel. Er. % Opt. # MPI Process

App. RBASP FiM RBASP FiM RBASP FiM RBASP FiM Act.

BT 1.98 1.04 2.17 10.95 66.45 18.07 136 360 360

EP 0.44 2.13 0.64 5.31 76.74 15.32 309 252 248

SP 1.98 0.21 16.55 1.61 94.21 19.14 212 64 56

LU 0.14 0.06 23.48 6.01 79.15 26.88 82 28 20

IS 1.73 1.3 22.59 6.75 90.94 34.36 70 70 70

CG 2.63 2.99 26.17 5.32 77.65 40.73 156 102 102

PR 2.02 0.91 44.48 6.81 57.65 31.46 21 56 64

KM 1.61 0.42 9.37 1.98 30.43 10.87 64 192 192

has poor adaptability to changes in the values of attributes (e.g., number of processes). FiM provides tighter error

bounds, which is very important for such a quick estimation modeling technique. We further observe that the optimal

number of processes predicted by FiM is very close to the actual one. We also rank the number of processes according

to the actual and predicted results from FiM and calculate the correlation
1
between the actual and predicted rankings.

We obtain a high correlation in the range of 0.80 to 0.99, which indicates considerable accuracy of our FiM estimation

technique.

We further use the Chi-square goodness-of-fit test [29] to evaluate how well the predicted runtime distribution

matches with the actual measured runtime distribution with varying application parameters and the number of processes.

Our null hypothesis is that the predicted data are not consistent with actual distribution. The significance level of our

test is 0.1, meaning that the deviation of the predicted value is not more than 10%. The p-value2 that we obtain for our

test is equal to 0.08. Since the P-value (0.08) is less than the significance level (0.1), we cannot accept the null hypothesis.

This indicates reasonably high confidence of less than 10% error between the actual and predicted values.

4.1.1 Individual Prediction Results. We carefully study the effectiveness of our model for predicting execution time

with the increasing number of processes. Fig. 6 shows the results for FiM per data point (e.g., per pixel in K-means)

when operated with a dataset consisting of 13 million data points after getting trained using three datasets with less

than 1000 data points. These experiments are performed using the C5 hardware configuration of Table 2. We conduct

all experiments for 1000 times and measure the average runtime as well as the minimum and maximum actual runtime

obtained in these 1000 runs which are shown by the range bars. From Fig. 6 (a), we observe that the actual calculation

time keeps decreasing when we have more simultaneous processes running. We also observe that 192 is the optimal

number of processes. Increasing the number of processes further above 192 does not give any performance improvement.

Our model can accurately predict this optimal number of processes.

Fig. 6 (b) shows the results of FiM-Com for the scatter pattern. For scatter of "n" data points over "p" processes, "n/p"

data points need to be transferred to each process. For scatter, each process receives a unique subset of the dataset

and thus, with the increase in the number of processes, the number of data points to be transferred in total does not

increase. Hence, the runtime of the scatter communication depends mainly on the size of input datasets and not on

the number of processes. So, we evaluate the FiM-Com scatter model under different datasets of different sizes. The

1
A correlation between actual and predicted ranks describes the degree of agreement between them. Correlation ranges between −1 and 1 with 1 being 
the best; higher correlation signifies better accuracy of predicted results.
2
The p-value is a statistical measure of the deviation of the actual distribution from the hypothesis.
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Fig. 6. Actual and predicted time - (a) Calculation (b) Scatter (c) Broadcast (d) Gather

results are shown in Fig. 6 (b) are obtained using 192 processes and for datasets with the different number of data

points mentioned on the x-axis in thousands. The smallest dataset consists of one thousand data points and the largest

dataset consists of 13 million data points. We observe that, when we have relatively small datasets, the scatter time per

data point increases rapidly with the increase in dataset size until 600 thousand data points scattered to 192 processes.

However, for larger datasets, the scattering time per data point remains almost constant or increases very slowly.

Each data point is of 20 Bytes, thus for less than or equal to 600 thousand data points scattered over 192 processes,

less than or equal to 64KB is required to be transferred to each process. Note that the eager protocol message size

is set to 64KB with environment variable MP_EAGER_LIMIT. Accordingly, the default receive buffer size is increased

with environment variable MP_BUFFER_MEM. Hence, for a data transfer smaller than 64KB, the communication network

follows the eager protocol. However, for a large data transfer, the communication network follows the rendezvous

protocol [35] to perform sender-receiver handshake. Our scatter model is designed to capture the effect of this protocol

shift.

Fig. 6 (c) shows the results of FiM-Com for broadcast as a function of the number of processes. We see that data

transfer of each data point consumes more time as the number of processes increases. This is because for broadcast,

with each additional process, the number of data points to be transmitted also increases unlike scatter. The increase in

data packets incurs an additional load which in turn increases the average broadcast time of each data point. Lastly,

the results under the uplink gather pattern are plotted in Fig. 6 (d) with respect to the number of processes for each

data point. The gathering time increases linearly with an increase in the number of processes due to the increased
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congestion in the communication network, with more data points to be received by the data collecting node. From

Fig. 6, we observe that our FiM models accurately predict the calculation and communication times under different

communication patterns. Also, the predicted results mostly remain in the range bars (i.e., the minimum to the maximum)

of the actual observations. All these graphs show that FiM estimates are very accurate.

4.2 Sensitivity Analysis
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Fig. 7. Sensitivity analysis - (a) Dataset size (b) Number of Iterations (c) Number of Clusters

One significant contribution of our modeling techniques is to accurately predict for large datasets by using only 
small datasets to train and calibrate the models. In our experiments, we use three small datasets as the training ones to 
collect data for model calibration. For a new application, we need first to train to derive a new model. However, for 
new sets of application parameters and new datasets (including both small and large ones) of the same application, the 
derived model can be used to predict the runtime. Therefore, we perform a sensitivity analysis of different dataset sizes 
and application parameters. We argue that if the user has the flexibility to choose application parameters for achieving 
optimal performance, our model then can provide useful guidance by helping the user to decide appropriate parameters. 

For example, K-means processing with more iterations and more clusters can provide better clustering results and 
accuracy but consume more time. Therefore, it would be useful to use FiM to estimate the execution time with respect 
to the increase in the number of iterations and number of clusters to determine how much extra latency is needed to 
achieve better accuracy. The results of execution time for the K-means algorithm as a function of (a) dataset size, (b) 
the number of iterations, and (c) number of clusters are plotted in Fig. 7. Fig. 7 also shows the actual and predicted 
calculation and communication time. We experiment with different hardware configurations as shown in Table 2, and 
present the results of the C5 configuration here. In these experiments, we also use the predicted optimal number of 
processes listed in Table 4. For each plot in Fig. 7, we do a sensitivity analysis on one parameter and fix the remaining 
two parameters with dataset size of 250 MB, 500 iterations and 250 clusters. We observe that our models can accurately 
predict the execution time even when the datasets become large, see Fig. 7 (a). Note that we only use small datasets 
to train our models. Fig. 7 (b) shows a linear increase of execution time with increasing number of iterations. Fig. 7 
(c) further shows execution time with respect to the increase in number of clusters. Summarizing from Fig. 7, we can 
see that FiM consistently achieves predicted results in good agreement with actual ones under different application 
parameters like dataset size, number of iterations and number of clusters.

We further evaluate the prediction of our models under different hardware configurations. A distributed computing 
platform deployed using MPI offers different choices in the number of parallel processes and the distribution of cores 
(e.g., C1-C5 listed in Table 2). Fig. 8 shows the actual and predicted execution times with respect to the number of 
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Fig. 8. Sensitivity analysis w.r.t. number of MPI processes for (a) K-means and (b) Pagerank

parallel processes for (a) K-means and (b) Pagerank, respectively. We can see that the best performance (i.e., the shortest

execution time) is achieved in the middle range of processes, e.g., 38 for K-means and 12 for Pagerank. FiM is able to

predict the optimal performance for both applications accurately. Predicted results match well with actual ones across

the different number of processes.
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Fig. 9. Sensitivity analysis w.r.t. distribution of cores under (a) a small dataset with 40 vertices and (b) a large dataset with 4039
vertices for Pagerank application

Fig. 9 plots the predicted results for Pagerank under five different hardware configurations listed in Table 2. In order

to be able to predict across such heterogeneous platforms, we calibrate our model for data compute and data transfer

among each type of available hardware. We observe that the first three configurations (C1, C2, and C3) achieve a shorter

execution time for a small dataset (see Fig. 9 (a)). When we have large datasets, C4 and C5 with more distributed cores

are better (see Fig. 9 (b)). FiM can accurately predict such performance trends, i.e., Pagerank becomes more scalable on

the higher number of distributed cores for larger datasets. These estimation results can thus provide us with insightful

data regarding the scalability of an application on a multi-core computing platform.

Here, we evaluate our technique by individually varying each variable parameter. From the results presented above,

we see that this sensitivity analysis helps to observe that prediction accuracy of our model remains intact with changing

application parameters, number of parallel processes and different hardware platforms.
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4.3 Validation

In this section, we present the validation for considering the linear regression model to extrapolate hardware

variables such as TC , SC andU . In particular, we show results using K-means clustering as a representative. Recall, for

K-means, we chose linear regression to extrapolate hardware variables as a function of application parameters (I , N ,

and K ), see Section 2. There are a variety of regression models that can be used. It is not straightforward to choose the

right regression model that is best suited to our requirement. Even a complex model might over-fit the training data,

generating a substantial prediction error on other datasets. On the other hand, a simple model may under-estimate

the learning trends and produce incorrect predicted results [39]. Considering these two cases, we first investigate the

learning trend of three hardware variables (TC, SC, and U) under different settings of application parameters. We choose

the linear regression model after examining other regression models such as a piece-wise linear model, Poisson models

and quadratic models with different degrees of the polynomial.
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We investigate the learning trend of three hardware variables under different settings of application parameters. 
We show the hardware variables such as TC, SC, and U for K-means clustering as a representative. Fig. 10 depicts 
the resulting surface of each hardware variable as a function of application parameters (e.g., I and K for the K-means 
application). Similar results can be obtained for other combinations of application parameters, such as (I , N ) and (N , K ). 
In Fig. 10, linear surfaces can be found for different hardware variables. Thus, we conclude that hardware variables TC , 
SC and U , linearly depend on the increment in application parameters (such as K , I and N ). These results confirm the 
use of the linear regression mapping in our machine learning approach.

We also investigate the calibration of our communication models, i.e., the training results of the service rates for 
each server in the queuing models, see Section 3.2. In Fig. 11, we plot the CDFs of the measured communication service 
times (i.e., 1/µ2, 1/µ3 and 1/µ4) for the three components (i.e., metadata transfer (M), network initialization (C) and data 
fetch time (R)) in the communication. The predicted service times drawn from our calibrated service processes (i.e., 
Eq. 14, Eq. 15 and Eq. 16) are also plotted in Fig. 11. We can see that the predicted service time distributions well capture 
the actual service times.

The Chi-square goodness-of-fit test [29] is used to evaluate how the three derived statistical distributions (i.e., 
uniform, logarithmic and exponential) for µ2, µ3 and µ4 fit the actual measurements. The chi-squared test is used to 
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Fig. 11. Cumulative distributed functions (CDFs) of the actual and predicted service times (per job) for (a) metadata transfer, (b)
network initialization, (c) data fetching

determine whether there is a significant difference between the expected distribution and the observed distribution. Our

null hypothesis is that the derived statistical distributions are not consistent with actual distribution. The significance

level of our test is 0.15, meaning that the maximum deviation of the predicted distribution is not more than 15%. The

p-values3 that we obtain for service rates µ2, µ3 and µ4 are equal to 0.08, 0.11 and 0.14, respectively. Since the P-values

are less than the significance level (0.15), we reject the null hypothesis. This indicates reasonably high confidence of not

more than 15% error between the actual and predicted values.
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6 RELATEDWORK

Modeling helps to shorten the development cycle by providing the necessary insights to obtain optimal performance. Performance

modeling can be approached in several different ways, including empirical evaluation [17; 18], simulation [9; 26; 28] and analytical

modeling [4; 15]. Empirical evaluation is a technique for gaining knowledge about a system from observations of experiments. This

requires the exact implementation as well as similar hardware to the target because results are based on observed ground truth.

Empirical techniques were popular in the past when computer hardware was stable over long periods. They give result fast and

accurately for the datasets similar to training.

Simulators model hardware such as memory hierarchy, communication buses, parallel ports, and accelerators [31; 33; 40]. They

evaluate each block of the given codes, similar to the manner that it is executed on the target machine. Thus, they require source

codes while performing prediction. Although simulators like SimpleScalar [3] and CACTI [38] can predict with high accuracy, they

also consume a long time to give predicted results. Their slow running time and infrastructure cost are major drawbacks.

Analytical modeling is the technique of building a set of equations to show the high-level abstraction of the behavior of an

application and a hardware architecture. This type of modeling can be evaluated quickly and easily as it is reduced to the form of the

set of equations to be solved. Analytical models can be flexible and scalable but are comparatively less accurate than empirical and

simulation-based models because they lack accurate hardware machine models. The major drawback of analytical modeling is that

it limits the scope of prediction. These models will give high prediction errors if tested with parameters which were not captured

when building the model equations. An innovative idea is the combination of the above models, e.g., COMPASS [25]. It gives good

accuracy but requires the compilation of source code for each new test dataset as well as the conversion of source codes to ASPEN [36].

3
The p-value is a statistical measure of deviation of the actual distribution from the hypothesis.
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COMPASS requires the hardware machine model to be formed not only for training but also for testing, which is quite time consuming,

especially for large datasets.

Predicting the performance of any parallel processing platform consists of two major phases, i.e., calculation and communication.

The Markov chain modeling using probabilistic distribution assists in predicting the calculation load of multi-process and multi-core

architectures [12; 27; 32]. These approaches model systems in the form of equations, where changes to the code or data require

changes to the equations. The above process can be time-consuming when we desire to predict for a range of parameters. Some

analytical models [13; 14; 21; 22; 34] require the conversion of source code into a control flow chart for the ease of framing equations.

Our model predicts the performance of an application on a range of input parameters without requiring a new set of equations, as

FiM uses a machine learning model to learn hardware parameters. Ad hoc analytical models and structured analytical models have

been developed to predict the network communication behavior of an application [11]. They use predefined models such as timeline

diagrams showing various network overheads. This type of models cannot efficiently capture different patterns like scatter, broadcast

and gather. The concept of using queuing theory to model such communication and predict the expected communication time is a

novel idea described in our paper.

7 CONCLUSIONS

We present a novel performance modeling technique (FiM) to predict the execution time of iterative multi-stage data processing

applications running on parallel computing paradigm. We combine different modeling techniques, such as stochastic Markov modeling,

machine learning techniques and queuing theory, to predict the end-to-end execution time. FiM estimates the time required for both

data calculation and data communication across a range of input datasets, application configurations and parallel hardware parameters

such as number of processes. We demonstrate that FiM helps system designers and application programmers choose optimal hardware

parameters and application parameters. More importantly, our prediction models are parameterized using small datasets but can

predict accurately for large datasets. We evaluated our approach using NAS Parallel Benchmarks and real iterative data processing

applications. We rank the number of processes according to the actual and predicted results from FiM and calculate the correlation

between the actual and predicted rankings. Our results show that FiM obtains high correlation in the range of 0.80 to 0.99, which

indicates considerable accuracy of our technique. In the future, we plan to expand the scope of our prediction model to investigate

other communication patterns like all-to-all communication. We will also capture scenarios where there is an overlap between the

communication and computation phases. Large-scale computing platforms, including GPUs, will further be considered as a target

environment.
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