
I IIIII IIIIIIII II llllll lllll lllll lllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111
US 20180067857Al

c19) United States
c12) Patent Application Publication

Wang et al.
c10) Pub. No.: US 2018/0067857 Al
(43) Pub. Date: Mar. 8, 2018

(54) EFFICIENT DATA CACHING
MANAGEMENT IN SCALABLE
MULTI-STAGE DATA PROCESSING
SYSTEMS

(71) Applicant: Samsung Electronics Co., Ltd.,
Suwon-si (KR)

(51)

Publication Classification

Int. Cl.
G06F 12/0811
G06F 12/0862

(2006.01)
(2006.01)

(52) U.S. Cl.
CPC G06F 12/0811 (2013.01); G06F 2212/62

(2013.01); G06F 2212/602 (2013.01); G06F

(72) Inventors: Jiayin Wang, Dorchester, MA (US);
Zhengyu Yang, Boston, MA (US);
Thomas David Evans, San Marcos, CA

12/0862 (2013.01)

(57) ABSTRACT

According to some example embodiments, a method
includes: receiving, by a processor, from a data source, a
processing profile comprising input data blocks and a plu­
rality of operations for executing using the input data blocks;
executing, by the processor, one or more of the operations of
the processing profile to generate a new output data after
each of the executed one or more operations; storing, by the
processor, the new output data from at least one of the one
or more operations as intermediate cache data; and trans­
mitting, by the processor, the new output data from a final
operation from among the one or more operations to the data
source for display thereby.

(US)

(21) Appl. No.: 15/423,384

(22) Filed: Feb. 2, 2017

Related U.S. Application Data

(60) Provisional application No. 62/384,078, filed on Sep.
6, 2016.

,-·· 102
~-mmmm ___ mmmmm ___ mmmmm ___ mmmmm ____ mmm __ J_mmmmm ___ mmmmm ___ mmmmm ___ mmmmm ___ mmmmm~

308a·

302--,

Cluster Master

wo1·ker

Task Worker

Data Worker

Caci1e \fi/orker

storage

(
404b

308b·-

104a-~

Master
,,--306

Data Master 11

worker

Task Worker

Data Worker

Cache 1/Vorker

Cluster-based
cache

lfchej
Distributed
File System

~

...-,---312

Cache Master I

worker
304c

-i Task Worker

308c
1 Data Worker

314c
Cache VVorker

\
i04d

' ' ' I
' L/316
' ' ' ' '
!

' ' '
v310

Patent Application Publication Mar. 8, 2018 Sheet 1 of 7 US 2018/0067857 Al

100.__
""'

110
\
\

102
/ r-----------L----------~

110 112
\

FIG.1

n
192 200

_____ 2v4 ____________ '\ _____________ /-------------------,
r------ ---------------------------~--------~

Job Execution

Job Profile
< Data, {op1, op2,

FIG. 2

Output
Data

,-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-~

·1
02

--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
~

10
4a

- M
as

te
r

30
2-

-,

30
6

C
lu

st
er

 M
as

!e
r

D
at

a M
as

te
r

//
/

w
or

ke
r

w
or

ke
r

30
4a

 ·-
.J

 ·~
 T

as
k W

or
ke

r
I

30
4b

 ~.
.J

 ~
T

as
k W

or
ke

r

30
8a

-
D

at
a W

or
ke

r

31
4a

-..

~

D
at

a W
or

ke
r

C
lu

st
er

-b
as

ed

ca
ch

e

~

D
is

tr
ib

ut
ed

F

ile
 S

ys
te

m

,,.
--

-3
12

C
ac

he
 M

as
te

r

'"
,..

__
 ',"

w
or

ke
r

30
4c

T

as
k W

or
ke

r

D
at

a W
or

ke
r

~

~

~

~

40
4b

\\ i0

4c

F
IG

. 3

\ 10
4d

' i I I I ;..
/3

16

' I I ' i (/
31

0
' ' ' I ' J

""
O

~
 ...
..

('
D

 =

...
.. t 'e

 -....

(')

~
 ...
.. ...
.

0 =

""
O

=

O

" -....

(')

~
 ...
.. ...
.

0 =

~

~
 :-
:

~C
IO

N

0 ...
.

C
IO

rJ
J =
­

('
D

('

D
 ...
..

N

0 ...
.

-.
...

J

c rJ
J

N

0 ...
.

C
IO

...

_
0 0 O

'I
-.

...
J

C
IO

U

l
-.

...
J

>
 ...
.

--
--

--
--

--
--

--
30

_2
_:

_:
-

--
--

--
--

--
--

--
--

--
_ £

_-
-1

02

,
--

--
--

--
--

--
--

--
--

-~
:-

31
2-

--
--

--
--

--
--

-,

C
lu

st
er

 M
as

te
r

C
ac

he
 M

as
te

r

C
ac

he
 M

et
a D

at
a

c-
40

2
40

6-
--

,,.

Jo
b S

ch
ed

ul
er

t

, .
. 1

1 i,

,.1
A

pp
lic

at
io

n
S

er
vi

ce
 i--
--

--
-1

C

ac
he

 S
ch

ed
ul

er

T
as

k S
er

vi
ce

,,
',,

T
as

k \
N

or
ke

r

T
as

k C
lie

nt

30
4a

-3
04

c -
-

T
as

k E
xe

cu
te

r

C
ac

he
 S
er

vi
ce

C
ac

he
 W

or
ke

r
C

ac
he

 !W
or

ke
r

C
ac

he
 C
lie

nt

C
ac

he
 C
!ie

nt

C
ac

he
 E
xe

cu
te

r
C

ac
he

 E
xe

cu
te

r

31
4a

-3
14

c-
'--

31
4a

-3
14

c

F
IG

. 4

""
O

~
 ...
..

('
D

 =

...
.. t 'e

 -....

(')

~
 ...
.. ...
.

0 =

""
O

=

O

" -....

(')

~
 ...
.. ...
.

0 =

~

~
 :-
:

~C
IO

N

0 ...
.

C
IO

rJ
J =
­

('
D

('

D
 ...
..

~

0 ...
.

-.
...

J

c rJ
J

N

0 ...
.

C
IO

...

_
0 0 O

'I
-.

...
J

C
IO

U

l
-.

...
J

>
 ...
.

11
0-

--.
...

-

1.
 S

ub
m

it a
 jo

b
50

0-
j

-3
14

1
C

ac
he

 W
or

ke
r

. '
(-

--
51

0
¥

i
··.

,·.
">

>
'

6.
R

es
po

ns
e

s1
2.

/l
i°

"-
51

4
_,

,./
,,

•
ll

--
--

50
2

3.
 R

es
po

ns
e th

e
si

m
pl

ifi
ed

 jo
b

pr
of

ile

2.
 S

en
d

jo
b

pr
of

ile

50
8 -

-
'<

,, ca
ch

e
.

7.
 R

eq
ue

st
! i

8.
 S

en
d

5.
 R

eq
ue

st
 ','

,,l
oc

at
io

n
ca

ch
e i

 i
 ca

ch
e

ca
ch

e l
oc

at
io

n
',,

 '
··.

.
bl

oc
k i

i b
lo

ck

'
•,

j

I

4.
 A

ss
ig

n t
as

k
'<

>

!
',

-3
04

50

6-
-7

/
__

__
__

,..

..
/

/
/

5.
 R

eq
ue

st

.. /"
 /

da

ta
 !o

ca
tio

n /

//
/

/
/

/

r1
5

/
/

o
1

--
")

,/
/

6.
 R

es
po

ns
e

/
//

da
ta

 lo
ca

tio
n

__
__

__

..:
;;

,.i
(.(

I
D

at
a M

as
te

r
r"

''-
··

51
8

~-
-3

06

F
IG

. 5

'
7.

 R
eq

ue
st

! i
8.

 S
en

d
da

ta
 i i

 da
ta

bl

oc
k i

i b
lo

ck

52
0-

--
-!

·v
:

.5
22

...

.. ,
..,

!
I

!.

:

D
at

a W
or

ke
r

--
30

8

"'
O

~
 ...
..

('
D

 =

...
.. t 'e

 -....

(')

~
 ...
.. ...
.

0 =

"'
O

=

O

" -....

(')

~
 ...
.. ...
.

0 =

~

~
 :-
:

~C
IO

N

0 ...
.

C
IO

rJ
J =
­

('
D

('

D
 ...
..

.i;
...

0 ...
.

-.
...

J

c rJ
J

N

0 ...
.

C
IO

...

._

0 0 O
'I

-.
...

J
C

IO

U
l

-.
...

J

>
 ...
.

Patent Application Publication Mar. 8, 2018 Sheet 5 of 7 US 2018/0067857 Al

input: 5, 0, I, P, C
i = M,j = 1

,,-600
/

,,--602
,,.,-.---'----'--.

i<1?

,.--606 .,--------No i . -

610~·-·--·····-

~ No
-------------··N; Pi== {o, , oi} && B == Ii?

j > K?

Yes .~-·-614

Yes
----6"18---""""---""""'"'

FIG. 6

Submit a job with input data
list and operation list (D,O)

Get the simplified job profile
from Cache Master (U.V)

v·
.r 700

,,..102

+ .--704
,-----'---'"'"' Yes

Is V empty?

Return (Cj,{Oi, . , OM})

--706

'No .~-708 Copy Ci to DFS as the result

No

Get U from DFS

714

...-----------..
Is D a list of Yes
cache data?

Execute the operations
\I with tt1e input data 0

FIG. 7

,,--710

Get U from Cache System

End

Patent Application Publication Mar. 8, 2018 Sheet 6 of 7 US 2018/0067857 Al

804
\

i ++

Yes

input: 0, ¢, r. S', B' /800
Initial: Q1={},Q2{},Q30,i=1

i ,,,.-·-·802 ___ ..,__ _ __,_- No

i <= IN!?

t Yes

o + s1 < s 11
1 + bi < B?

ni is the !ocal server?

--810

Q1.add (ni)

--812 -
ni in same rack? Return 01

~-818

Q3.add (ni)

Return Q2

FIG. 8

. t;-,v-E;:;Amr· 1 inpu : vv, , 1.,, c, "'' , 1 =
·900

Sort cache information table
-902

--904
No

i <= K?

Yes ,---906
E1 ~(Jl&

sizeOf (CJ >= El &
freeWritingBandwidthOf (W,) >~ r? No

Yes

1021 > O?

_.,-·822
./

I++

Update tables in Cache Master /912

Return NULL /
916

FIG. 9

-824

10
00

 ·-
"-

I inp
ut

: 8
, ¢

,
r,

 S'
, B

'
In

iti
al

: T
=

{}
, iv

1a
p<

no
de

in

de
x,

 C
V

>
R

=
{}

10
02

 ""
--

T
 =

 s
el

ec
tC

an
di

da
te

s(
)

IT
I :::

:::

O
?

Y
es

10

06
-,

 ..
T

 =.
 c

le
ar

C
ac

he
()

10
04

-.
..:

.-
...

..:
::.

...
...

...
~.

...
...

..J
:..

~~

...
...

...
...

...

Y
es

10

10
 \ R
et

ur
n N

U
LL

10
14

~

IT
I ==

 0
7

R
et

ur
n T

.g
et

(O
)

N
o

N
o IT

i :.
-.

:::
:

1?

10
22

10
12

10
26

R
et

ur
n n

r

F
IG

. 1
0

i +
+

~~
10

16

s
~
 c.·

·1
01

8
...

.
Y

es

i <
 IT

I?

N
o

j :
-:

. N
od

e I
D

 o
f M

[i]

bi
;;,

 bi
+

 r
s 1

 =
 sJ

 +
 8

,

i
C

al
cu

la
te

 C
V

 b
y

E
q.

 3
R

ad
dU

, C
V

)
b,

 =
 b·

 ~
r

J
J

SJ
=

 S
i-

0
10

20

-·
 1

02
4

...
...

.
r R

-=
-n

-o
d-

e-
lD

-w
i-t

h-
m

-in
_C

_V
_i

n
...

...
..

, R
 ...
...

.
L

j

""
O

~
 ...
..

('
D

 =

...
.. t 'e

 -....

(')

~
 ...
.. ...
.

0 =

""
O

=

O

" -....

(')

~
 ...
.. ...
.

0 =

~

~
 :-
:

~C
IO

N

0 ...
.

C
IO

rJ
'1

=

­
('

D

('
D

 ...
..

-.
...

J
0 ...

.
-.

...
J

c rJ
'1

N

0 ...

.
C

IO
 --0 0 O

'I
-.

...
J

C
IO

U

l
-.

...
J

>
 ...
.

US 2018/0067857 Al

EFFICIENT DATA CACHING
MANAGEMENT IN SCALABLE

MULTI-STAGE DATA PROCESSING
SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application claims priority to and the
benefit of U.S. Provisional Patent Application No. 62/384,
078, entitled "MEMORY SYSTEM AND METHOD OF
USING THE SAME", filed in the United States Patent and
Trademark Office on Sep. 6, 2016, the entire content of
which is incorporated herein by reference.

FIELD

[0002] Aspects of one or more example embodiments of
the present invention relate to a system and method for
efficient data caching management in scalable multi-stage
data processing systems.

BACKGROUND

[0003] Improvements in big data analytics and cloud com­
puting in recent years have given rise to systems and
infrastructures that enable various entities to host or rent
processing clusters to analyze and process data. In a large­
scale computing cluster, various big data processing jobs
may include a sequence of multiple stages or operations, in
which intermediate data is generated after each stage, but the
intermediate data may not be saved or stored for subsequent
use during subsequent processing jobs.
[0004] The above information discussed in this Back­
ground section is only for enhancement of understanding of
the background of the described technology and therefore it
may contain information that does not constitute prior art
that is already known to a person having ordinary skill in the
art.

SUMMARY

[0005] Aspects of one or more example embodiments of
the present invention relate to a system and method for
efficient data caching management in scalable multi-stage
data processing systems.
[0006] According to some example embodiments, a sys­
tem includes: a processor; and a memory coupled to the
processor, wherein the memory stores instructions that,
when executed by the processor, cause the processor to:
receive, from a data source, a processing profile comprising
input data blocks and a plurality of operations for executing
using the input data blocks; determine whether or not a block
of stored intermediate cache data corresponds to an opera­
tion from among of the plurality of operations; in response
to determining the block of stored intermediate cache data
corresponds to the operation from among the plurality of
operations, generate a simplified processing profile based on
the block of stored intermediate cache data; execute the
simplified processing profile by generating a new output
data after each operation of the simplified processing profile;
store the new output data from at least one operation as
intermediate cache data; and transmit the output data from a
final operation in the simplified processing profile to the data
source for display thereby.
[0007] According to some example embodiments, the
instructions further cause the processor to, in response to

1
Mar. 8, 2018

determining the block of stored intermediate cache data
corresponds to the operation from among the plurality of
operations, identify a location of the stored intermediate
cache data among a plurality of worker nodes.

[0008] According to some example embodiments, gener­
ating the simplified processing profile comprises removing
the operation corresponding to the block of stored interme­
diate cache data.

[0009] According to some example embodiments, the
simplified processing profile comprises a subset of the
plurality of operations of the processing profile without the
operation corresponding to the block of stored intermediate
cache data.

[0010] According to some example embodiments, the
instructions further cause the processor to: identify a can­
didate worker node from among a plurality of worker nodes
for storing the new output data according to a load balance
calculation of at least one of storage space of each of the
worker nodes and input/output bandwidth of each of the
worker nodes; and store the new output data at the identified
candidate worker node.

[0011] According to some example embodiments, the
instructions further cause the processor to: identify whether
or not there is sufficient space among a plurality of worker
nodes to store the new output data; and in response to
determining there is not sufficient space among the plurality
of worker nodes, clear a block of pre-stored intermediate
cache data having a lower priority level than the new output
data.

[0012] According to some example embodiments, a
method includes: receiving, by a processor, from a data
source, a processing profile comprising input data blocks
and a plurality of operations for executing using the input
data blocks; determining, by the processor, whether or not a
block of stored intermediate cache data corresponds to an
operation from among of the plurality of operations; in
response to determining the block of stored intermediate
cache data corresponds to the operation from among the
plurality of operations, removing, by the processor, the
operation from the processing profile to generate a simpli­
fied processing profile; executing, by the processor, the
simplified processing profile by generating a new output
data after each operation of the simplified processing profile;
storing, by the processor, the new output data from at least
one operation as intermediate cache data; and transmitting,
by the processor, the output data from a final operation in the
simplified processing profile to the data source for display
thereby.

[0013] According to some example embodiments, the
method further includes, in response to determining the
block of stored intermediate cache data corresponds to the
operation from among the plurality of operations, identify­
ing, by the processor, a location of the stored intermediate
cache data among a plurality of worker nodes.

[0014] According to some example embodiments, gener­
ating the simplified processing profile includes removing, by
the processor, the operation corresponding to the block of
stored intermediate cache data.
[0015] According to some example embodiments, the
simplified processing profile includes a subset of the plu­
rality of operations of the processing profile without the
operation corresponding to the block of stored intermediate
cache data.

US 2018/0067857 Al

[0016] According to some example embodiments, the
method further includes identifying, by the processor, a
candidate worker node from among a plurality of worker
nodes for storing the new output data according to a load
balance calculation of at least one of storage space of each
of the worker nodes and input/output bandwidth of each of
the worker nodes.
[0017] According to some example embodiments, the
method further includes storing, by the processor, the new
output data at the identified candidate worker node.
[0018] According to some example embodiments, the
method further includes: identifying, by the processor,
whether or not there is sufficient space among a plurality of
worker nodes to store the new output data; and in response
to determining there is not sufficient space among the
plurality of worker nodes, clearing, by the processor, a block
of pre-stored intermediate cache data having a lower priority
level than the new output data.
[0019] According to some example embodiments, a
method includes: receiving, by a processor, from a data
source, a processing profile comprising input data blocks
and a plurality of operations for executing using the input
data blocks; executing, by the processor, one or more of the
operations of the processing profile to generate a new output
data after each of the executed one or more operations;
storing, by the processor, the new output data from at least
one of the one or more operations as intermediate cache
data; and transmitting, by the processor, the new output data
from a final operation from among the one or more opera­
tions to the data source for display thereby.
[0020] According to some example embodiments, the
method further includes: determining, by the processor,
whether or not a block of stored intermediate cache data
corresponds to an operation from among of the plurality of
operations; and in response to determining the block of
stored intermediate cache data corresponds to the operation
from among the plurality of operations, removing, by the
processor, the operation from the processing profile to
generate a simplified processing profile.
[0021] According to some example embodiments, the
method further includes in response to determining the block
of stored intermediate cache data corresponds to the opera­
tion from among the plurality of operations, identifying, by
the processor, a location of the stored intermediate cache
data among a plurality of worker nodes.
[0022] According to some example embodiments, the
simplified processing profile includes a subset of the plu­
rality of operations of the processing profile without the
operation corresponding to the block of stored intermediate
cache data, and the method further includes executing, by
the processor, each of the plurality of operations among the
subset.
[0023] According to some example embodiments, the
method further includes identifying, by the processor, a
candidate worker node from among a plurality of worker
nodes for storing the new output data according to a load
balance calculation of at least one of storage space of each
of the worker nodes and input/output bandwidth of each of
the worker nodes.
[0024] According to some example embodiments, the
method further includes storing, by the processor, the new
output data at the identified candidate worker node.
[0025] According to some example embodiments, the
method further includes: identifying, by the processor,

2
Mar. 8, 2018

whether or not there is sufficient space among a plurality of
worker nodes to store the new output data; and in response
to determining there is not sufficient space among the
plurality of worker nodes, clearing, by the processor, a block
of pre-stored intermediate cache data having a lower priority
level than the new output data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] Amore complete appreciation of the present inven­
tion, and many of the attendant features and aspects thereof,
will become more readily apparent as the invention becomes
better understood by reference to the following detailed
description when considered in conjunction with the accom­
panying drawings in which like reference symbols indicate
like components, wherein:
[0027] FIG. 1 illustrates a data processing system, accord­
ing to some example embodiments of the present invention;
[0028] FIG. 2 depicts an example data processing job
transmitted from a data source to a data processing cluster,
according to some example embodiments of the present
invention;
[0029] FIG. 3 illustrates a block diagram showing aspects
of an example architecture of a data processing cluster,
according to some example embodiments of the present
invention;
[0030] FIG. 4 illustrates further details of a data process­
ing cluster, according to some example embodiments of the
present invention;
[0031] FIG. 5 illustrates further details of the workflow
described above for a data processing job, according to
example embodiments of the present invention;
[0032] FIG. 6 illustrates aspects of a process or function
for simplifying a data processing job, according to some
example embodiments of the present invention;
[0033] FIG. 7 illustrates aspects of a process or function
for executing a data processing job according to some
example embodiments of the present invention;
[0034] FIG. 8 illustrates aspects of a process for selecting
candidates for storing intermediate cache data, according to
some example embodiments of the present invention;
[0035] FIG. 9 illustrates aspects of a process for clearing
stored cache data, according to some example embodiments
of the present invention; and
[0036] FIG. 10 illustrates aspects of a process for selecting
a cache worker, according to some example embodiments of
the present invention.

DETAILED DESCRIPTION

[0037] Aspects of example embodiments of the present
invention relate to a system and method for efficient data
caching management in scalable multi-stage data processing
systems.
[0038] Features of the inventive concept and methods of
accomplishing the same may be understood more readily by
reference to the following detailed description of embodi­
ments and the accompanying drawings. Hereinafter,
example embodiments will be described in more detail with
reference to the accompanying drawings, in which like
reference numbers refer to like elements throughout. The
present invention, however, may be embodied in various
different forms, and should not be construed as being limited
to only the illustrated embodiments herein. Rather, these
embodiments are provided as examples so that this disclo-

US 2018/0067857 Al

sure will be thorough and complete, and will fully convey
the aspects and features of the present invention to those
skilled in the art. Accordingly, processes, elements, and
techniques that are not necessary to those having ordinary
skill in the art for a complete understanding of the aspects
and features of the present invention may not be described.
Unless otherwise noted, like reference numerals denote like
elements throughout the attached drawings and the written
description, and thus, descriptions thereof will not be
repeated. In the drawings, the relative sizes of elements,
layers, and regions may be exaggerated for clarity.
[0039] It will be understood that, although the terms
"first," "second," "third," etc., may be used herein to
describe various elements, components, regions, layers and/
or sections, these elements, components, regions, layers
and/or sections should not be limited by these terms. These
terms are used to distinguish one element, component,
region, layer or section from another element, component,
region, layer or section. Thus, a first element, component,
region, layer or section described below could be termed a
second element, component, region, layer or section, with­
out departing from the spirit and scope of the present
invention.
[0040] Spatially relative terms, such as "beneath,"
"below," "lower," "under," "above," "upper," and the like,
may be used herein for ease of explanation to describe one
element or feature's relationship to another element(s) or
feature(s) as illustrated in the figures. It will be understood
that the spatially relative terms are intended to encompass
different orientations of the device in use or in operation, in
addition to the orientation depicted in the figures. For
example, if the device in the figures is turned over, elements
described as "below" or "beneath" or "under" other ele­
ments or features would then be oriented "above" the other
elements or features. Thus, the example terms "below" and
"under" can encompass both an orientation of above and
below. The device may be otherwise oriented (e.g., rotated
90 degrees or at other orientations) and the spatially relative
descriptors used herein should be interpreted accordingly.
[0041] It will be understood that when an element, layer,
region, or component is referred to as being "on," "con­
nected to," or "coupled to" another element, layer, region, or
component, it can be directly on, connected to, or coupled to
the other element, layer, region, or component, or one or
more intervening elements, layers, regions, or components
may be present. In addition, it will also be understood that
when an element or layer is referred to as being "between"
two elements or layers, it can be the only element or layer
between the two elements or layers, or one or more inter­
vening elements or layers may also be present.
[0042] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the present invention. As used herein, the
singular forms "a" and "an" are intended to include the
plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms
"comprises," "comprising," "includes," and "including,"
when used in this specification, specify the presence of the
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. As used
herein, the term "and/or" includes any and all combinations
of one or more of the associated listed items. Expressions

3
Mar. 8, 2018

such as "at least one of," when preceding a list of elements,
modify the entire list of elements and do not modify the
individual elements of the list.
[0043] As used herein, the term "substantially," "about,"
and similar terms are used as terms of approximation and not
as terms of degree, and are intended to account for the
inherent deviations in measured or calculated values that
would be recognized by those of ordinary skill in the art.
Further, the use of "may" when describing embodiments of
the present invention refers to "one or more embodiments of
the present invention." As used herein, the terms "use,"
"using," and "used" may be considered synonymous with
the terms "utilize," "utilizing," and "utilized," respectively.
Also, the term "exemplary" is intended to refer to an
example or illustration.
[0044] When a certain embodiment may be implemented
differently, a specific process order may be performed dif­
ferently from the described order. For example, two con­
secutively described processes may be performed substan­
tially at the same time or performed in an order opposite to
the described order.
[0045] The electronic or electric devices and/or any other
relevant devices or components according to embodiments
of the present invention described herein may be imple­
mented utilizing any suitable hardware, firmware (e.g. an
application-specific integrated circuit), software, or a com­
bination of software, firmware, and hardware. For example,
the various components of these devices may be formed on
one integrated circuit (IC) chip or on separate IC chips.
Further, the various components of these devices may be
implemented on a flexible printed circuit film, a tape carrier
package (TCP), a printed circuit board (PCB), or formed on
one substrate. Further, the various components of these
devices may be a process or thread, running on one or more
processors, in one or more computing devices, executing
computer program instructions and interacting with other
system components for performing the various functional­
ities described herein. The computer program instructions
are stored in a memory which may be implemented in a
computing device using a standard memory device, such as,
for example, a random access memory (RAM). The com­
puter program instructions may also be stored in other
non-transitory computer readable media such as, for
example, a CD-ROM, flash drive, or the like. Also, a person
of skill in the art should recognize that the functionality of
various computing devices may be combined or integrated
into a single computing device, or the functionality of a
particular computing device may be distributed across one
or more other computing devices without departing from the
spirit and scope of the exemplary embodiments of the
present invention.
[0046] Unless otherwise defined, all terms (including tech­
nical and scientific terms) used herein have the same mean­
ing as commonly understood by one of ordinary skill in the
art to which the present invention belongs. It will be further
understood that terms, such as those defined in commonly
used dictionaries, should be interpreted as having a meaning
that is consistent with their meaning in the context of the
relevant art and/or the present specification, and should not
be interpreted in an idealized or overly formal sense, unless
expressly so defined herein.
[0047] With the rise of big data analytics and cloud
computing, more and more companies hos or rent process­
ing clusters to analyze various types of data to improve their

US 2018/0067857 Al

business. In a large-scale computing cluster, large data
processing jobs include a sequence of processing stages,
where each stage represents or corresponds to a generally
defined data operation or transformation. For example, each
stage may execute operations such as filtering, merging,
sorting, and mapping of data. For a sequence of multiple
stages corresponding to an overall processing job, interme­
diate data are created or generated from each stage except
for the final stage. When such intermediate data is generated
and then deleted, it may not be reused or shared by other
jobs. In many circumstances, however, the intermediate
data, if not deleted, would be usable by other processing
jobs, for example, when subsequent jobs include stages that
have the same input data and operations. Therefore, deletion
of the intermediate data may lead to inefficiencies in terms
of the use of resources for the processing cluster.

[0048] As will be described in more detail below, embodi­
ments of the present invention may be configured to harness
the data sharing among data processing stages across dif­
ferent jobs or operations to avoid or reduce instances of
redundant data processing. For example, embodiments of
the present invention may operate to identify different stages
that utilize the same input data and perform the same
processing operation, but serve different jobs. By sharing
data between different stages that are executing the same or
similar function on the same or similar input, the system
may reduce the overall amount of system resources by
executing only one of these stages, storing the output data as
intermediate cache data, then enabling the subsequent stages
to utilize the output data and proceed to the next stage for
their corresponding job.

[0049] Embodiments of the present invention may further
utilize an efficient cluster-wide caching scheme for hosting
the intermediate data to support consecutive data sharing.
This scheme may operate, for example, by utilizing aspects
of a cluster-based caching system, described in more detail
below.

[0050] Some embodiments of the present invention
include a mechanism for describing data dependency for
each stage in a job's profile. When a job is submitted to the
processing cluster, according to some embodiments of the
present invention, the profile or metadata of the job includes
additional information describing the data dependency of
each stage thereby enabling sharing of intermediate cache
data.

[0051] Some embodiments of the present invention
include an architecture of a cluster-based caching system
based on a paralleling big-data processing system.

[0052] Some embodiments of the present invention
include an efficient cluster-wide caching scheme for hosting
the intermediate data to support consecutive data sharing.
This scheme may be operated by utilizing the architecture of
a cluster-based caching system. Embodiments of the present
invention may first examine and analyze the executions of
representative big data processing jobs, understand and
model the characteristics of data access (especially the
intermediate data access), and then simplify the stages of
jobs by reusing the intermediate data in the cache system.

[0053] Some embodiments of the present invention
include cluster-based caching system on a big data process­
ing platform for intermediate data sharing and reuse by
different applications, which may significantly improve the
overall performance of the platform.

4
Mar. 8, 2018

[0054] FIG. 1 illustrates a data processing system 100
according to some example embodiments of the present
invention. As shown in FIG. 1, the data processing system
100 includes a data processing cluster 102, which includes
a plurality of nodes 104a-104d (the number of nodes 104a-
104d is not limited to the number illustrated in FIG. 1, and
may include fewer or additional nodes according to the
design of the data processing system 100). Each of the nodes
104a-104d may be in electronic communication with one
another, for example, through a local area network (LAN),
private wide area network (WAN), and/or a public wide area
network such as, for example, the Internet, in a wired or
wireless configuration.
[0055] Each of the nodes 104a-l 04d includes a processor
106a-106d, respectively. Additionally, each of the nodes
includes a memory 108a-108d, respectively. The memories
108a-108d may include volatile memory (e.g., random
access memory (RAM), such as dynamic RAM) and non­
volatile memory (e.g., a hard disk drive (HDD)), which may
serve as long-term storage. Different nodes 104a-104d may
be distributed across various geographic or system locations.
For example, according to some embodiments, one or more
nodes 104a-104d may be located at a same general geo­
graphic location (for example, in the same server rack),
while one or more nodes may be located at a different
geographic location.
[0056] Collectively, according to embodiments of the
present invention, the data processing cluster 102 operates
as a distributed data processing system using any suitable
cluster computing framework known in the art. For example,
according to some embodiments of the present invention,
the distributed data processing cluster or system 102 may
operate within the Apache Spark framework, and/or may
provide a functional application programming interface
(API) for manipulating data at scale, in-memory data cach­
ing and reuse across computations.
[0057] The data processing cluster 102 may further be in
electronic communication with one or more data sources or
users 110 over a communication network 112. That is the
data sources or users 110 may be located remotely or
externally with respect to the data processing cluster 102.
The communication network 112 may be for example, a
LAN, private WAN, and/or a public WAN such as, for
example, the Internet. According to some embodiments, the
data source 110 may also be local with respect to one or
more of the nodes 104a-l 04d. According to embodiments of
the present invention, the data processing cluster 102 is
configured to receive a data processing job profile and input
data from the data source 110, execute the data processing
job on behalf of the data source 110, and return a result of
the data processing job to the data source 110, as will be
described in more detail herein. According to some embodi­
ments, the data source or user 110 may include, for example,
a computer system including a processor and a memory
(similar to 106 and 108), one or more user input devices, and
a display panel for displaying information (e.g., output data
received from the data processing cluster 102).
[0058] According to some embodiments of the present
invention, a node in the data processing cluster 102 (e.g., the
node 104a) is designated or operates as a master node, and
other nodes (e.g., nodes 104b-104c) are designated or oper­
ate as worker nodes. The master node is responsible for
managing worker nodes and scheduling the jobs. Worker
nodes are responsible for data storing and task execution.

US 2018/0067857 Al

[0059] According to some embodiments of the present
invention, a data source or user 100 submits a job to the data
processing cluster 102 through the master node. One job is
then split into multiple tasks or operations and one task is
assigned one block of input data. During execution of a job,
one piece of intermediate data is created after each stage or
operation until the final output data is generated following
the final stage or operation of the job. The intermediate data
is the output data from each intermediate stage or operation
of the data processing job, and also serves as the input data
of the next stage. After a data processing job is completed,
according to embodiments of the present invention, inter­
mediate data may be stored as intermediate cache data for
reuse and/or sharing for other jobs.

[0060] Thus, as will be described in more detail below,
embodiments of the present invention operate to harness
data sharing among data processing stages across different
jobs to avoid redundant data processing. In particular,
embodiments of the present invention operate to identify
stages of different data processing jobs that receive the same
input data and perform the same processing operation, and
then re-use or share the intermediate data among the differ­
ent jobs.

[0061] By enabling sharing of the intermediate data, the
data processing cluster 102 may reduce the overall system
data processing, because repetitive instances of performing
a particular operation on particular input data may be
reduced or eliminated altogether. For example, after a par­
ticular data processing job executes a stage or operation
having a particular input data, the output of the stage may be
stored as intermediate cache data, and subsequent data
processing jobs that have the same stage or operation with
the same input data can simply utilize the intermediate cache
data as the input for the next stage in their respective
sequence of stages, rather than re-executing the operation
that was already executed for the previous data processing
job.

[0062] As part of the data processing system 100, embodi­
ments of the present invention may include an enhanced job
profile to describe the input data and the operations of all the
stages so that the data processing cluster (e.g., the data
processing cluster 102) can identify data processing jobs
with the same input data and the same or similar operations.
Additionally, as will be described in more detail below,
embodiments of the present invention may include a cluster­
based caching system or mechanism operating as part of the
data processing cluster to manage the cached intermediate
data, work with other components in the cluster to simplify
the operations of new jobs, and provide and/or retrieve the
intermediate cache data for reuse by subsequent data pro­
cessing jobs. Further, embodiments of the present invention
further include schemes for supporting sharing of interme­
diate cache data for subsequent jobs and for allocating or
distributing the intermediate cache data in memory of the
various nodes in the data processing cluster.

[0063] According to embodiments of the present inven­
tion, a data processing cluster (e.g., the data processing
cluster 102) may have H worker nodes (including, e.g.,
nodes 104b-104d). Thus, the set N of worker nodes may be
represented as N: N={ni, n2 , ... , nH}. If Sis the storage
capacity and B is the maximum IO bandwidth for interme­
diate data caching in each worker node, then the set S': {s1 ,

s2 , ... , sH} and the set B': {b1 , b2 , ... , bH} represent the

5
Mar. 8, 2018

collective remaining capacities and IO bandwidth of each
worker node for caching, respectively.
[0064] According to embodiments of the present inven­
tion, a data processing job submitted to the data processing
cluster, includes two elements: the input data and a list of
operations to be executed upon the input data to generate the
final output data. The input data contains a list of data blocks

D; {D,li E [1, NJ}, where D, represents the data block ID
and N is the number of data blocks. Thus, the input data
includes a set or list of data blocks, each having a corre­
sponding data block ID (e.g., ranging from 1 to N, where N
is the total number of data blocks). Additionally, the opera-

tion list O; {O,li E [1,Ml}, where O, is the operation ID
in stage i, and M is the number of stages or operations for
the data processing job. According to embodiments of the
present invention, both the data block ID and the operation
ID are unique in the data processing cluster. For example,
{{block!}, { opl, op2}} shows a data processing job with
one data block block! and two operations opl and op2.
[0065] According to embodiments of the present inven­
tion, the data processing cluster 102 stores two tables of
data, an operation table and a cache information table.
[0066] The operation table stores the input data for dif­
ferent stages, the operations executed for each stage, and the
intermediate cache data for each stage. For example, accord­
ing to some example embodiments of the present invention,
an example operations table includes three colunms, as
illustrated in Table 1, below. A first colunm of the operation
table may include a block list of input data, may include an
operation list for each stage, and a third colunm may include
a list of cached intermediate data blocks. Thus, for a table
with K rows, the elements in the operations table may be a
collection of three 2-D ~tors which can be represented as:

(l,. P, C), ~re I ; { l ,Ii E [1, Kl}, P : { P ,Ii

E [1, Kl}, and C : { C ,Ii E [1, Kl}. For a list of cached

data blocks C , row i of the table, l , is the list of original

input data blocks and P , is related the operation list. For
instance, Table 1 shows the record in the operation table of
a completed data processing job j 1 whose intermediate data
have been saved in the cache system. The input data of j 1
contains two blocks: block! and block2. There are three
stages in jl with operation IDs opl, op2, and op3. cache!
and cache2 are the cache IDs of the intermediate data after
stage 1 and stage 2. There are two data blocks created after
the third stage, cache3 and cache4. Additionally, the opera­
tion ID is unique for each operation and the cache ID is
unique for each cached data block in the cache cluster. The
original input data may be either the data saved in a
distributed file system (DFS) of the data processing cluster
or intermediate cache data stored in a cluster-based cache
system of the data processing cluster.

Original Input Data

{block!, block2}
{block!, block2}
{block!, block2}

TABLE 1

Operation List

{opl}
{opl,op2}

{opl, op2, op3}

Cached Intermediate Data List

{cache!}
{ cache2}

{ cache3, cache4}

[0067] A second table stored as part of the data processing
cluster 102 is the cache information table. The cache infor-

US 2018/0067857 Al

mation table may be stored, for example, in a Cache Master
memory of a master node, and includes a record for the
location of each list of cache blocks and the priority of the
cache list. According to some embodiments, a score may be
utilized to represent a priority of a cached data list where, for
example, the higher the score, the higher the priority is.
Certain intermediate cache data may have a higher priority
than other intermediate cache data, for example, if the
intermediate cache data is utilized more frequently, utilizes
more system resources to generate, and the like.

[0068] The cache information table may be formatted, for

exampl~to include three columns as: (C ... Ml , E),

where C : { C ,Ii E [1, Kl}, W: {W,li E [1, Kl} and E:
{E,li E [1, Kl}. The cache information table may have the
same number of rows as the operation table, represented as

K. The collection of cache data lists C is the same as the

one in the operation table. For the list of cache data IDs C ,

in row i, l-V shows the node IDs of the data worker which
contain this cache list and the score of the cache list is E,.
Table 2, below, shows an example of a cache information
table.

TABLE 2

Cached Intermediate Data List Data Worker List

{cache!} worker!
{ cache2} worker2

{ cache3, cache4} worker3

Priority

scorel
score2
score3

[0069] In addition to the cache information table and
operation table, according to some embodiments of the
present invention, a data processing job request from a user
may include a data processing job profile, which includes
information data dependency. Each stage in a data process­
ing job may, for example, only have one input data. For
example, the input data for an individual stage in a data
processing job may be the original input data provided with
the data processing job request from the data source or user,
or may be intermediate data generated from the immediately
preceding stage. Additionally, each stage may, for example,
only have one output data which is provided as the only
input to the next stage or constitutes the final output data for
the data processing job. Thus, according to embodiments of
the present invention, data processing jobs received from
different data sources or users may share the same input data
(or intermediate data) and one or more common processing
stages. Embodiments of the present invention enable com­
mon stages, with common input, from different data pro­
cessing jobs to be executed fewer times (e.g., only one time)
and the output data and/or intermediate data can be shared
among the different data processing jobs.

[0070] According to some embodiments of the present
invention, a job profile for a data processing job is trans­
mitted to the data processing cluster 102 from the data
source or user 110, which specifies the data input for each
stage, thereby enabling data sharing for multiple data pro­
cessing jobs. When submitting a data processing job, the
data source or user 110 creates and transmits the job profile
to the cluster master (e.g., the node 104a) of the data
processing cluster 102 with the original input data files and

6
Mar. 8, 2018

a list of operations of all of the stages in the data processing
job. According to some embodiments of the present inven­
tion, the job profile includes unique data file names and each
operation has a unique operation ID. Such job profiles can
be managed by the cluster master (e.g., of the master node)
for the further scheduling.

[0071] FIG. 2 depicts an example data processing job 200
transmitted from a data source (e.g., the data source 110) to
a data processing cluster (e.g., the data processing cluster
102) according to some example embodiments of the present
invention. The data processing job 200 includes a sequence
of processing stages (e.g., stages 1-3), and each stage
represents a generally defined data operation or transforma­
tion (e.g., opl, op2, op3, etc.) such as filtering, merging,
sorting, and mapping. The data processing job 200 includes
a job profile 202, for example, where opl, op2, and op3
represent the operation IDs of the data operations in stage 1
to stage 3.

[0072] As is described in more detail below, when a new
data processing job is submitted to or received by the data
processing cluster 102, the data processing cluster 102 may
analyze the job profile to determine whether or not the data
processing cluster 102 already has intermediate cache data
that can be reused for the present data processing job.
Additionally, the cluster master (e.g., of the master node)
maintains a table to track the locations of all the cached data.
If the data processing cluster 102 identifies intermediate
cache data that is already stored in the data processing
cluster 102, the data processing cluster 102 may simplify the
data processing job, for example, by removing stages or
operations from the job execution path 204 where the output
data for the stages is already stored as intermediate cache
data. The stage(s) following any removed stages then are
provided with the stored intermediate cache data as input
data, thereby reducing the overall resources utilized for the
data processing job.

[0073] FIG. 3 illustrates a block diagram showing aspects
of an example architecture of a data processing cluster
according to some example embodiments of the present
invention. Embodiments of the present invention utilize a
cluster-based cache system with one cache master operating
as part of a master node (e.g., the node 104a) and a plurality
of cache workers operating as part of a plurality worker
nodes (e.g., the nodes 104b-104d) in the data processing
cluster 102.

[0074] The Cluster Master 302 and Task Workers 304a-
304c, of the master node (e.g., the node 104a) and the
worker nodes (e.g., the nodes 104b-104d), respectively, are
responsible for executing the stages of a data processing job.
For example, the Cluster Master 302 may schedule the data
processing jobs and assign resources for different tasks or
operations executed as part of a data processing job. The
Task Workers 304a-304c may execute the assigned tasks and
update the resource availability of their corresponding
worker node to Cluster Master 302.

[0075] Additionally, the Data Master 306, of the master
node, and the Data Workers 308a-308c, of the worker nodes,
are responsible for storing data. The data processing cluster
102 may further include a distributed file system (DFS) 310
for distributing data storage across the memory of each of
the worker nodes. The metadata of the file system may be
managed in the Data Master 306 and the data itself may be
stored by the Data Workers 308a-308c (e.g., in the distrib-

US 2018/0067857 Al

uted file system 310). When clients or a Task Worker
requires data, they will request the Data Master to get the
location of the data.

[0076] According to embodiments of the present inven­
tion, the master node (e.g., the node 104a) may include a
cache master 312, which communicates with other compo­
nents in the master node and send writing/reading cache
requests to the cache workers 314a-314c of the worker
nodes. The cache workers 314a-314c update the resource
capacities of their corresponding worker node to the Cache
Master 312 and execute the writing/reading requests from
the Cache Master 312, for example, by storing intermediate
cache data in a cluster-based cache 316 and reporting the
location and nature of the stored intermediate cache data to
the cache master 312.
[0077] FIG. 4 illustrates further details of a data process­
ing cluster according to some example embodiments of the
present invention.

[0078] According to some embodiments, the cluster mas­
ter 302 in the master node is responsible for scheduling
applications and managing task workers. A data processing
job is divided into multiple tasks or operations by the cluster
master 302, and these tasks or operations will be assigned to
the task workers by the cluster master 302, according to any
suitable task assignment and distribution scheme.

[0079] According to some embodiments of the present
invention, the cluster master 302 may further include an
Application Client 402 and an Application Parser 404.
[0080] According to some embodiments of the present
invention, the Application Client 402 operates as a commu­
nication mechanism between the cache master 312 and the
cluster master 302. When a data processing job request is
submitted to and/or received by the cluster master 302, a job
profile may be recorded in a job metadata table. The job
metadata table may, for example, include three columns: a
Job ID column, an Input Data column, and an Operation List
colunm, as illustrated in Table 3 below.

[0081] The Job ID column stores unique IDs for each data
processing job submitted to the data processing cluster. The
Input Data colunm stores a list of input data blocks for each
data processing job. Each input data block may be stored, for
example, in the DFS of the data processing cluster 102 with
a unique block ID. The operation list column includes a the
list of operation IDs for a data processing job in each stage.
Table 3 illustrates an example format of a data processing
job profile, where jO, j 1 and j2 are the job IDs of three
different data processing jobs, block! and block2 are the
block IDs of the input data, and op 1, op 2, and op3 are the
operation IDs.

Job ID

jO
jl
j2

TABLE 3

Input Data

{block!}
{block!}
{block!, block2}

Operation List

{opl}
{opl, op2}
{ opl, op 2, op3}

[0082] For a given data processing job, the Application
Client 402 transmits the data processing job profile to the
Cache Master 312 to determine whether or not there are
intermediate cache data is already stored by the data pro­
cessing cluster 102 that can be shared. If such intermediate
cache data exists, the Cache Master 312 transmits the cache

7
Mar. 8, 2018

ID and its location (e.g., the data location among the nodes)
to the application client (e.g., by way of an application
service block).
[0083] In the case where intermediate cache data is avail­
able for sharing, the Application Parser 404 operates to
simplify the operations of a job depending on the response
from the cluster master of the cached intermediate data, by
removing stages or operations from the job at hand. For
example, if jO is completed and its output data is cached with
a unique cache ID cacheO, the metadata of j 1 can be
simplified as illustrated in Table 4, below.

TABLE 4

Job ID Input Data Operation List

jl { cacheO} {op2}

[0084] According to embodiments of the present inven­
tion, the Task Worker in each worker node executes the tasks
assigned by the cluster master 302. A Task Client block of
the task worker may operate to maintain a heartbeat with
Cluster Master 302, to report the resource utility of the
worker node, and to receive the commands from the Master
node. Each task worker 304a-304c may further include one
or more Task, where each Task Executer executes one task
at a time. The Task Executers request the data location from
the data master and read/write data to the Data Worker.
[0085] Additionally, according to embodiments of the
present invention, when a task is assigned to a task worker,
the task worker identifies the type or nature of the input data.
For example, if the input data is a block in the DFS, the task
worker will request the data from Data Master and Data
Executer. If the input data is a block of intermediate cache
data, the task worker will send the cache ID to the Cache
Master and request the location of the cache data. After the
task worker receives the input data location, the task worker
will read the data from the Cache Executer. The output data
of a Task Executer will be written into cache or DFS
according to the priority of the data and the capacity of the
cache.
[0086] According to some embodiments of the present
invention, the cache master may include four blocks, com­
ponents or modules: Application Service, Cache Service,
Task Service and Cache Scheduler. Application Service 406
communicates with the Cluster Master 302. Such commu­
nication may be based on any suitable communication
protocol, such as RPC protocol (Remote Procedure Call
Protocol). When a data processing job submitted to or
received by the application master, the data processing job
profile may be reported to the cache master 312 by way of
the application client 402 and the application service 406.
[0087] A cache service block communicates with the
Cache Worker in each worker node. Such communication
may also be based on any suitable communication protocol,
such as an RPC protocol. A heartbeat mechanism is main­
tained between the Cache Service and the Cache Worker
periodically. Via a heartbeat, the Cache Worker may report
to the Cache Master the resource capacities of the worker
node including CPU, Memory, Cache and Storage utilities
and responses whether a cache writing/deleting command is
successfully executed. Additionally, the Cache Master may
transmit writing/deleting cache messages to the cache
worker by way of the heartbeat communication. If the Cache
Master cannot receive the heartbeat from a Cache Worker

US 2018/0067857 Al

for a period of time (e.g., a predetermined period of time,
e.g., 10 minutes), the Cache Worker will be removed from
the cache cluster.
[0088] A Cache Scheduler block 408 may execute cache
management operations such as writing, reading, and delet­
ing. For example, while caching a piece of data, the cache
scheduler 408 may calculate the priority for the data (rep­
resented as a score) in the entire cache cluster and then select
one or more appropriate Cache Workers to execute the
writing commands to store the cache data. Additionally,
when cached data is read from the data processing cluster
102 as part of a data processing job, the Cache Scheduler
block 408 may operate to retrieve the cached data from the
corresponding Cache Worker node.
[0089] Further, according to some embodiments, in order
to improve the hit ratio of prestored or cached data, thereby
improving the utility of the system, if the cache capacity of
the entire data processing cluster is full, the Cache Scheduler
408 may cache data having a low priority (e.g., the lowest
priority) in favor of storing or caching data having a higher
priority.
[0090] The relative priority value (represented as a score)
of cache data or potential cache data may be determined
based on a probability of future accesses of the data. For
example, more frequently accessed data may be assigned a
higher priority value. Additionally, the relative priority value
of cache data or potential cache data may be determined
based on reconstruction costs for generating or obtaining the
data in the future. For cached intermediate data, the recon­
struction cost indicates the penalty if the data is completely
evicted out of the cluster. Therefore, data with a higher
reconstruction cost may be assigned a higher priority value.
Further aspects of calculating and assigning the priority
score for cached data or potential cache data is described in
further detail in U.S. patent application Ser. No. 15/404,121,
entitled "In-memory Shared-Intermediate Data Reuse
Replacement and Caching," filed on Jan. 11, 2017, and U.S.
patent application Ser. No. 15/404,100, entitled "A Dupli­
cate In-Memory Shared-Intermediate Data Detection and
Reuse Module in Spark Framework," filed on Jan. 11, 2017
the entirety of both of which is incorporated by reference
herein.
[0091] In addition, the Cache Master 312 maintains two
metadata tables: the operation table and the cache informa­
tion table, described above. Once the intermediate data of a
completed job is saved in the cache system successfully or
any cached data is deleted, both tables are updated by the
cache master 312.
[0092] FIG. 5 illustrates further details of the workflow
described above for a data processing job, according to
example embodiments of the present invention. At 500, a
data source 110 transmits, and the cluster master 302
receives, at operation 500, a data processing job, including
input data, and the data processing job profile and one or
more operations to be performed as part of the data pro­
cessingjob, as described above. When the cluster master 302
receives a submitted data processing job, the cluster master
302 may transmit, at operation 502, the job profile as
originally received (e.g., the enhanced job profile) to the
cache master 312, for determining whether or not the data
processing job can be simplified. The cache master 312 may
then initiate a search from among the stored intermediate
cache data to determine whether or not any of the stored
intermediate cache data corresponds to any operations of the

8
Mar. 8, 2018

data processing job (e.g., such that the stored intermediate
cache data corresponds to a same input data and a same
operation). If there is stored intermediate cache data in the
cache system which can be reused by the job, at operation
504, the cache master 312 may transmit the locations (e.g.,
within the cluster-based cache memory) of the stored inter­
mediate cache data, the stored intermediate cache data itself,
and/or a simplified job profile for which the redundant
operations are substituted with the stored intermediate cache
data. At operation 506, the cluster master 302 may generate
and/or assign tasks for the job profiled (e.g., the updated job
profile) and assigned to task workers 304 to execute the
operations of the job. If any aspect, operation, or interme­
diate stage of the data processing job relies on retrieving
stored intermediate cache data from the cache memory, the
individual task workers may, at operation 508, transmit a
request to the cache master 312 the cache location of the
stored intermediate cache data. The task workers 304 may
then, at operation 510, receive from the cache master 312 the
cache location within the cluster-based cache 316. The task
workers 304 may then request to, and receive from, respec­
tively at operations 512 and 514, the previously stored
intermediate cache data from the corresponding cache
worker 314. Similarly, if any aspect, operation, or interme­
diate stage of the data processing job relies on retrieving data
from a data worker 308, the individual task workers may, at
operation 516, transmit a request to the data master 306 the
data location of the data. The task workers 304 may then, at
operation 518, receive from the data master 306 the data
location within the corresponding data worker 308. The task
workers 304 may then request to, and receive from, respec­
tively at operations 520 and 522, the data from the corre­
sponding data worker 308.
[0093] FIG. 6 illustrates aspects of a process or function
for simplifying a data processing job in Cache Master,
according to some example embodiments of the present
invention. Referring to FIG. 6, at operation 600, input data
and data processing job profile data is received (e.g.,
received by the cluster master) from an input source (e.g.,
data source 110). Referring to the input data that may be

received at operation 600, D is the list of input data blocks

and -z; is the list of operations of a job. The number of
operations is M, and the number of records (e.g., rows) in the

operation table is I ,. P , C represent the original input
data, the operation list, and the cached intermediate data of
the operation table in Cache Master, respectively.

[0094] The system may then determine, at operation 602,
whether or not a counter i, initially set to be equal to the
number of operations, is less than 1. If the counter i is less
than 1, the system may return the list of input data blocks
and the operations list, at operation 604, after which the
system will proceed with processing the returned list of
input data blocks and the operations list as the simplified
data processing job. Otherwise, at operation 606, the system
may determine whether or not a counter j, initialized at 1, is
greater than the number of entries in the operation table of
the operations list.

[0095] At operation 608, the system may iterate through
the table of cached intermediate data to determine whether
or not any of the operations, and corresponding input data,
from the input list of operations matches the cached inter­
mediate data. In the process, the system may proceed at

US 2018/0067857 Al

operations 610 and 612, to increment the counter j and
decrement the counter i, respectively, after evaluating each
operation and the corresponding input data block to deter­
mine whether or not there is a corresponding stored inter­
mediate cache data entry. If there is a corresponding stored
intermediate cache data entry, the operation is removed from
the job profile, and the cached intermediate data that would
have been generated by the removed operation is retrieved
in its place. Once each operation and corresponding input
data has been evaluated to determine whether pre-stored
intermediate cached data already exists, the system may
return, at operations 616 or 618, the simplified data pro­
cessingjob. At operation 616, the simplified data processing
job may include the set of intermediate cache data resulting
from each of the operations being removed. At operation,
618, the simplified processing job may include the set of
intermediate cache data obtained during the simplification
process, plus the remaining operations for which the data
was not already stored as pre-stored intermediate cache data.
Process 1, below, also illustrates the algorithm of FIG. 6 in
pseudo code.

[0096] FIG. 7 illustrates aspects of a process or function
for executing a data processing job according to embodi­
ments of the present invention. At operation 700, a data
processing job, including input data D and an operations list
0 to be executed as part of the data processing job, is
submitted to the system (e.g., the cluster master) from a data
source. After a job profile is submitted to or received by the
data processing cluster, the data processing cluster may
generate a simplified job profile, at operation 702, in which
certain operations or stages may be removed as described
above, for example, with respect to FIG. 6. As illustrated at
operation 702, U is the input data of the simplified data
processing job profile, and Vis the simplified operations list.
At operation 704, the system determines whether or not the
set or list of simplified operations is empty or zero, and if so,
at operation 706, the system may simply utilize or copy the
corresponding cached intermediate data as the final output
and the data processing job is completed. If, at operation
704, the system determines the simplified operations list is
not empty, system may determine, at operation 708, to
determine whether or not the input data U of the simplified
job profile includes intermediate cache data. If so, at opera­
tion 710, the system may proceed to retrieve the input data
U from the cluster-based cache memory. Alternatively, if the
input data U includes data stored in the distributed file
system, the system may, at operation 712, retrieve the input
data U from the distributed file system. Then, at operation
714, the system may proceed with executing the simplified
operations V by utilizing the input data U. Process 2, below,
also illustrates the algorithm of FIG. 7 in pseudo code.

2

3
4
5

6

7
8

9

Process 1: simplifyJob

Procedure simplifyJob()

___.____._ -
Input Data: D, 0 , 1 , P , C
for i - M to 1 do

for j - 1 to K do

if P 1 -- {0 1, ... , O;} tben

ifD aaa-_l1 tben
1f 1 -- M tben

return (C 1, { })
else

9

10

11

2

3

4

5
6

7

8
9

10

Mar. 8, 2018

-continued

Process 1: simplify Job

return (C 1, {O;, ... , OM})

return (D, 0)

Process 2: jobExecution()

Procedure jobExecution()

(U, V) - simplify Job()

if I VI -- 0 tben

copy V to DFS as tbe result
else

if Vis cache data tben

get lJ from cache system
else

get V from DFS

Execute tbe operations I/ witb input data V

[0097] As illustrated in FIG. 8, after a data processing job
is completed (or during execution of a data processing job),
before the data processing cluster deletes all intermediate
data, the cache master may check the available cache
capacity of the cache cluster, identify a priority of interme­
diate data generated as part of the data processing job, and
store some or all of intermediate data in the cache memory
of the worker nodes. All newly created intermediate data
from all stages may be sorted by their priority score in
descending order and the system may request to store or
determine whether or not to store the intermediate data in the
cache system one by one. For the intermediate data from one
stage, if there are more than one worker nodes with enough
space, the cache master may select a node to complete
storage of the intermediate cache data, for example, based
on input/output bandwidth or demand of each node, and/or
available cache memory space in each node. For example,
the data processing cluster may select a node based on a
determination of which node will provide the most even
balance ofl/0 bandwidth or demand and/or available cache
memory space from among all of the nodes.

[0098] As illustrated in FIG. 9, when there is not enough
space to save the new intermediate data, the cache master
may check the priority value (score) of each cached data and
delete data with a lower priority than the n~ data, as

illustrated in FIG. 8. Referring to FIGS. 8 and 9, C : { C ,Ii

E [1, Kl}, W: {W,li E[l, Kl} and E: {E,li E [1, Kl}
represent the cached data list, the worker node ID of the data
and their scores recorded in the cache information table of

Cache Master. There are Krows in the table. C , is the cache
list in row i, w, is the worker node ID the cache list is in, E,

is the score of C ,, 8 be the size of the new intermediate
data, cp is the score of the new intermediate data, and r is the
I/0 bandwidth for one writing operation.

[0099] When there is no space to save the new interme­
diate data, Cache Master will execute the algorithm illus­
trated in FIG. 9 to clear the cache system. The cache
information table may be sorted by the score of the cached
data, and the data processing cluster searches the cache list

US 2018/0067857 Al

to identify cached data that has a larger size and a lower
priority score than the new data, and for which the corre­
sponding Cache Worker has enough writing bandwidth to
write new data. If the data processing cluster identifies such
previously stored intermediate cache data, it will be deleted
from the corresponding worker node and the new interme­
diate cached data may be stored in the corresponding worker
node. In addition, both the cache information table and the
operation table in Cache Master will be updated. Process 3,
below, also illustrates the algorithm of FIG. 9 in pseudo
code.

2

3
4
5

6

7
8
9

Process 3: clearCache ()

Procedure clearCache ()

Input Data: 8, <j>, r, C , W, E
sort cache information table by score in ascending order
for i = 1 to K do

then

if (E; < <j>) and (sizeOf (C;) >= e) and
(freeWritingBandwidthOf (W;) > r)

deleteC; in W;
update the cache information table and the operation table
return {W;}

return NULL

[0100] When there is sufficient space in more than one
cache worker in the system, cache master may identify a
cache worker to finish the writing. The load balance of both
the available cache memory space and the I/0 bandwidth
may be considered. According to some embodiments of the
present invention, the coefficient of variation (CV) may be
utilized to express the deviation of storage and I/0 band­
width in each worker node. As CV is expressed as a
percentage of the overall deviation, the deviation of storage
and I/0 bandwidth may be compared based on their CV
values. The lower the value is, the better the load balance is
presented in the cluster. As mentioned in the problem
formulation, in the cluster with H worker nodes, S is the
storage capacity and B is the maximum IO bandwidth for
caching intermediate data in each worker node. And the set
S': { s1 , s2 , ... , sH} B': {b1 , b2 , ... , bH} represent the
remaining storage capacities and IO bandwidth of each
worker node for caching. The coefficient of variations of the
storage space and I/0 bandwidth of the cache cluster can be
expressed according to the following equations (1) and (2),
below

) H
- .z.: (s; -sJ2
Hi=l

CV(space) = ---
5

) H - 2

li I_ (b; -bJ
i=l

CV(io) = ---
15

(1)

(2)

[0101] The overall load balance of the cluster considers
the load balance of both storage spaces and the disk I/0. An
overall coefficient of variation for each node can be
expressed according to equation 3, below. Some embodi­
ments of the present invention may set a predetermined
value t to adjust the weight of storage balance and disk IO

10
Mar. 8, 2018

balance, where E is a number ranging from O and 1.
According to some embodiments, the space balance may be
assigned a greater weight, because the balance of storage
space can improve the balance of disk I/0.

CV=eCV(space)+(l-e)CV(lo), eE(0,1). (3)

[0102] In addition, embodiments of the present invention
may further consider the locality of the intermediate data. As
the intermediate data are saved in the data workers, it may
be more efficient to select a cache worker which is close to
(e.g., geographically close to) the data worker with the
intermediate data (e.g., in a same server rack). Embodiments
of the present invention may categorize or group cache
workers into three different groups: the local server (the one
with the intermediate data), the servers in the same rack, and
the servers in different racks. When selecting a node for
storing intermediate cache data, embodiments of the present
invention may first consider the local server, followed by
servers in the same rack, and then servers in different racks.
[0103] Referring to FIG. 8, 8 is the size of the interme­
diate data and r is the I/0 bandwidth for one writing
operation. Cache Master will first choose the candidate
servers according to the process illustrated in FIG. 8, and
then select a cache server to save the intermediate data,
according to the algorithm illustrated in FIG. 10. If there is
no candidate server, Cache Master will invoke the process
illustrated in FIG. 9 to clear the cache system. Once the
intermediate data is successfully stored in the cache system,
the tables of cache information and operation will be
updated in the Cache Master.
[0104] Referring to FIG. 8, at operation 800, in selecting
a candidate server, the system may receive input data 8, r,
N, S', B', where 8 is the size of the intermediate data, r is
the IO bandwidth for one writing operation, and N is the list
of worker nodes. Ql is the set of the candidate server which
is also the local server (e.g., the server with the intermediate
data), Q2 is the set of candidate servers in the same rack, and
Q3 is the set of candidate servers in a different rack.
Beginning at operation 802, for i=l to INI (the length of N,
which is the number of worker servers or nodes in the
cluster), the system may determine, at operation 806,
whether or not 8 +S1 is less than Sor whether r +b1<B. If
so, the system may increment the counter i at operation 804.
If not, the system may determine, at operation 808, whether
or not n, is the local server. If so, the system may add n, to
Ql at operation 810, and return Ql at 812. Alternatively, if
n, is not in the local server, the system may determine, at
operation 814, whether or not n, is in the same rack. If so, the
system may add n, to Q2, at operation 816. If n, is not in the
same rack, the system may add n, to Q3, at operation 818.
Returning to operation 802, if i is greater than N, the system
may determine whether or not IQ21 is greater than 0. If so,
the system may return Q2, at operation 822. If not, the
system may return Q3, at operation 824.
[0105] Referring to FIG. 9, at operation 900, in clearing
cache from the cluster-based cache memory, the system may

receive, as input, 8, cp, r, C , W, E where 8 is the size of
the new intermediate data to be stored in the cache system,
cp is the score or priority of the new intermediate data, r is
the bandwidth that would be utilized to write the new

intermediate data, and C , W, E are the values from the
cache information table. At operation 902, the system may
sort the cache information table according to the priority or

US 2018/0067857 Al

score (e.g, in ascending order). Then, at operation 904,
starting at i= 1, the system may determine whether or not i is
less than or equal to K. If not, the system may proceed at
operation 908, to increment i. If so, the system may deter­
mine, at operation 906, whether or not E,<cp and the size of

C , is greater than or equal to zero and the free writing
badwidth of W, is greater than r. If so, the system may delete
C, in W,, at operation 910. Then, the system may proceed, at
operation 912, to update the tables in the cache master
according to the deleted intermediate cache data. Continuing
from operation 904, once i is greater than K, the system may
return W,.
[0106] Referring to FIG. 10, at operation 1000, in select­
ing a cache worker, the system may receive, as input, 8, r,
N, S', B'. Additionally, T be initialized as an empty set,
where T is a set used to save the list of candidate worker
nodes returned from the algorithm for selecting candidates.
Additionally, for each worker node, there is a tuple to save
the node index and it is matched (e.g., Map <node index,
CV>R={}). At operation 1002, the system may proceed to
select a candidate, for example, as discussed above with
respect to FIG. 8. Then, at operation, 1004, the system may
determine whether or not ITl==O. If ITl==O, the system may
proceed at operation 1006 to clear the cache, as discussed
above, for example, with respect to FIG. 9. Next, at opera­
tion 1008, the system may again determine whether or not
ITl==O. If, at operation 1008, ITl==O, the system may return
NULL at operation 1010. Alternatively, if, at operations
1004 or 1008, ITI !==O, the system may proceed, at operation
1012, to determine whether or not the length of T is 1 (e.g.,
ITl==l). If, at operation 1012, T==l, the system may return
the first worker node installed in the list T (e.g., T.get(O)). If,
however, at operation 1012, ITI !==1, the system may set a
counter i to a value of 1, at operation 1016. Then, at
operation 1018, the system may determine whether or not
i<ITI. Ifso, the system may proceed to operation 1024 to set
R to the node ID with the minimum CV in R. Alternative, if,
at operation 1018, i is not <ITI, they system may proceed, at
operation 1020, to set j=node ID of M[i], b1=b1+r, s1=s1+8,

1 H
- .Z.: (s; - sJ2
Hi=l

1 H - 2

li'f,(b,-bJ
i=l

CV= E:---
5
--- + (1 -E:)---

15

R.add(j, CV), b1=brr, and s1=sr8. Then, at operation 1022,
the system may increment i by 1 and then continue looping
through operations 1018, 1020, and 1022, until i is not less
than ITI.

[0107] The processes of FIGS. 8 and 10 are also illustrated
in pseudo code in processes 4 and 5 below, respectively.

Process 4: selectCandidates ()

Procedure selectCandidates ()
2 Input Data: 8, r , N, S', B'
3 Initial: Q1 = { }, Q2 = { }, Q3 = { }
4 for i = 1 to INI do
5 if {8 + s1 < S) or (r + b 1 < B) then
6 continue
7 else
8 if ni is the local server then

11
Mar. 8, 2018

-continued

Process 4: selectCandidates ()

9 Q 1.add (n,)
10 return Q 1
11 else if ni is in the same rack then
12 Q2.add (n,)
13 else
14 Q3.add (n,)
15 if1Q 21>0then
16 return Q2
17 return Q3

Process 5: selectCache Worker()

Procedure selectCache Worker()
2 Input Data: 8, r, N, S', B'
3 Initial: T = { }, Map<node index, CV> R = { }
3 T = selectCandidates ()
4 if ITI == 0 then
5 T = clearCache()
6 if ITI == 0 then
7 return NULL
8 else if ITI == 1 then
9 return T.get(O)

10 else
11 for i = 1 to ITI do
12 j = node ID of M[i]
13 b1 = b1 + r
14 s1 = s1 + 8
15

1 H - 2

8 I_ (b, - bJ
i=l

1 H
-.Z.:(s;-s)2
Hi=l

CV=£-----+ (1 -E:)---
5

16 R.add(j, CV)
11 b1 =b1 -r
18 s1 =s1 -8

19 r = node ID with min(CV) in R
20 return nr

[0108] Thus, according to one or more example embodi­
ments of the present invention, a data processing cluster may
facilitate improved use of resources in the data processing
cluster.
[0109] Although this invention has been described in
certain specific embodiments, those skilled in the art will
have no difficulty devising variations to the described
embodiment, which in no way depart from the scope and
spirit of the present invention. Furthermore, to those skilled
in the various arts, the invention itself herein will suggest
solutions to other tasks and adaptations for other applica­
tions. It is the Applicant's intention to cover by claims all
such uses of the invention and those changes and modifi­
cations which could be made to the embodiments of the
invention herein chosen for the purpose of disclosure with­
out departing from the spirit and scope of the invention.
Thus, the present embodiments of the invention should be
considered in all respects as illustrative and not restrictive,
the scope of the invention to be indicated by the appended
claims and their equivalents rather than the foregoing
description.

What is claimed is:
1. A system comprising:
a processor; and
a memory coupled to the processor, wherein the memory

stores instructions that, when executed by the proces­
sor, cause the processor to:

US 2018/0067857 Al

receive, from a data source, a processing profile com­
prising input data blocks and a plurality of operations
for executing using the input data blocks;

determine whether or not a block of stored intermediate
cache data corresponds to an operation from among
of the plurality of operations;

in response to determining the block of stored inter­
mediate cache data corresponds to the operation
from among the plurality of operations, generate a
simplified processing profile based on the block of
stored intermediate cache data;

execute the simplified processing profile by generating
a new output data after each operation of the sim­
plified processing profile;

store the new output data from at least one operation as
intermediate cache data; and

transmit the output data from a final operation in the
simplified processing profile to the data source for
display thereby.

2. The system of claim 1, wherein the instructions further
cause the processor to, in response to determining the block
of stored intermediate cache data corresponds to the opera­
tion from among the plurality of operations, identify a
location of the stored intermediate cache data among a
plurality of worker nodes.

3. The system of claim 1, wherein generating the simpli­
fied processing profile comprises removing the operation
corresponding to the block of stored intermediate cache data.

4. The system of claim 3, wherein the simplified process­
ing profile comprises a subset of the plurality of operations
of the processing profile without the operation correspond­
ing to the block of stored intermediate cache data.

5. The system of claim 1, wherein the instructions further
cause the processor to:

identify a candidate worker node from among a plurality
of worker nodes for storing the new output data accord­
ing to a load balance calculation of at least one of
storage space of each of the worker nodes and input/
output bandwidth of each of the worker nodes; and

store the new output data at the identified candidate
worker node.

6. The system of claim 1, wherein the instructions further
cause the processor to:

identify whether or not there is sufficient space among a
plurality of worker nodes to store the new output data;
and

in response to determining there is not sufficient space
among the plurality of worker nodes, clear a block of
pre-stored intermediate cache data having a lower
priority level than the new output data.

7. A method comprising:
receiving, by a processor, from a data source, a processing

profile comprising input data blocks and a plurality of
operations for executing using the input data blocks;

determining, by the processor, whether or not a block of
stored intermediate cache data corresponds to an opera­
tion from among of the plurality of operations;

in response to determining the block of stored interme­
diate cache data corresponds to the operation from
among the plurality of operations, removing, by the
processor, the operation from the processing profile to
generate a simplified processing profile;

12
Mar. 8, 2018

executing, by the processor, the simplified processing
profile by generating a new output data after each
operation of the simplified processing profile;

storing, by the processor, the new output data from at least
one operation as intermediate cache data; and

transmitting, by the processor, the output data from a final
operation in the simplified processing profile to the data
source for display thereby.

8. The method of claim 7, further comprising, in response
to determining the block of stored intermediate cache data
corresponds to the operation from among the plurality of
operations, identifying, by the processor, a location of the
stored intermediate cache data among a plurality of worker
nodes.

9. The method of claim 7, wherein generating the sim­
plified processing profile comprises removing, by the pro­
cessor, the operation corresponding to the block of stored
intermediate cache data.

10. The method of claim 9, wherein the simplified pro­
cessing profile comprises a subset of the plurality of opera­
tions of the processing profile without the operation corre­
sponding to the block of stored intermediate cache data.

11. The method of claim 7, further comprising identifying,
by the processor, a candidate worker node from among a
plurality of worker nodes for storing the new output data
according to a load balance calculation of at least one of
storage space of each of the worker nodes and input/output
bandwidth of each of the worker nodes.

12. The method of claim 11, further comprising storing,
by the processor, the new output data at the identified
candidate worker node.

13. The method of claim 7, further comprising:
identifying, by the processor, whether or not there is

sufficient space among a plurality of worker nodes to
store the new output data; and

in response to determining there is not sufficient space
among the plurality of worker nodes, clearing, by the
processor, a block of pre-stored intermediate cache data
having a lower priority level than the new output data.

14. A method comprising:
receiving, by a processor, from a data source, a processing

profile comprising input data blocks and a plurality of
operations for executing using the input data blocks;

executing, by the processor, one or more of the operations
of the processing profile to generate a new output data
after each of the executed one or more operations;

storing, by the processor, the new output data from at least
one of the one or more operations as intermediate cache
data; and

transmitting, by the processor, the new output data from
a final operation from among the one or more opera­
tions to the data source for display thereby.

15. The method of claim 14, further comprising:
determining, by the processor, whether or not a block of

stored intermediate cache data corresponds to an opera-
tion from among of the plurality of operations; and

in response to determining the block of stored interme­
diate cache data corresponds to the operation from
among the plurality of operations, removing, by the
processor, the operation from the processing profile to
generate a simplified processing profile.

16. The method of claim 15, further comprising, in
response to determining the block of stored intermediate
cache data corresponds to the operation from among the

US 2018/0067857 Al

plurality of operations, identifying, by the processor, a
location of the stored intermediate cache data among a
plurality of worker nodes.

17. The method of claim 15, wherein the simplified
processing profile comprises a subset of the plurality of
operations of the processing profile without the operation
corresponding to the block of stored intermediate cache data,
and the method further comprises executing, by the proces­
sor, each of the plurality of operations among the subset.

18. The method of claim 14, further comprising identi­
fying, by the processor, a candidate worker node from
among a plurality of worker nodes for storing the new output
data according to a load balance calculation of at least one
of storage space of each of the worker nodes and input/
output bandwidth of each of the worker nodes.

19. The method of claim 18, further comprising storing,
by the processor, the new output data at the identified
candidate worker node.

20. The method of claim 14, further comprising:
identifying, by the processor, whether or not there is

sufficient space among a plurality of worker nodes to
store the new output data; and

in response to determining there is not sufficient space
among the plurality of worker nodes, clearing, by the
processor, a block of pre-stored intermediate cache data
having a lower priority level than the new output data.

* * * * *

Mar. 8, 2018
13

