
I IIIII IIIIIIII II llllll lllll lllll lllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111
US 20180069944Al

c19) United States
c12) Patent Application Publication

Yang et al.
c10) Pub. No.: US 2018/0069944 Al
(43) Pub. Date: Mar. 8, 2018

(54) AUTOMATIC DATA REPLICA MANAGER IN
DISTRIBUTED CACHING AND DATA
PROCESSING SYSTEMS

(71) Applicant: Samsung Electronics Co., Ltd.,
Suwon-si (KR)

(72) Inventors: Zhengyu Yang, Boston, MA (US);
Jiayin Wang, Dorchester, MA (US);
Thomas David Evans, San Marcos, CA
(US)

(21) Appl. No.: 15/408,328

(22) Filed: Jan. 17, 2017

Related U.S. Application Data

(60) Provisional application No. 62/384,078, filed on Sep.
6, 2016, provisional application No. 62/404, 167, filed
on Oct. 4, 2016.

(51)

(52)

(57)

Publication Classification

Int. Cl.
H04L 29/08
H04L 12/24
H04L 12/26
U.S. Cl.

(2006.01)
(2006.01)
(2006.01)

CPC H04L 67/2842 (2013.01); H04L 41/5022
(2013.01); H04L 67/1002 (2013.01); H04L

43/0888 (2013.01); H04L 41/0672 (2013.01);
H04L 41/0677 (2013.01); H04L 43/0852

(2013.01); H04L 671148 (2013.01)

ABSTRACT

A method of data storage includes determining a latency
distance from a primary node to each of two or more replica
nodes, choosing a preferred replica node of the two or more
replica nodes based on the determined latency distances, and
write-caching data into the preferred replica node.

100
_y---·

110a 140a 140a
~ ' I

140a Cache Partitio~ } Replitartition
(for Locai VMs;; (for Qt ,er Nodes

/'130a
SSD" _1.,/ I I I I I I 1~

... HDD -~ ' ,,...... N t~ !.O , "130b
~ 2 ~~ 2 '

150a> > -\ ~ > 140b .
I I\

120 140b ·120

150a 150b 150a 150b
' .) \) \

130a~
\ { \ I

,,...330 Cache I Replica
...

SSD Cache I Replica i~,.. ..,-· 130a

~HOD HOD HOD HOD i
130b l __

-1 ,II iNUI -- --_,.,,-· '---- '! "l ' 110b
)"- i30b

, ,Ob

Patent Application Publication Mar. 8, 2018 Sheet 1 of 4

110a 140a 140a
~"' , I

I i

·1408 Cache Partition / Replic'htariition
(for Local VMs); (for Q1 ,er Nodes

/"130a
SSD" +/ I I , I I I I .. -----------------------------------... HOD i -~ 130' ' I ..,..... N

~
"'SJ". ,.n \ . ·D

~ 2 ~ 2 '
150a> > ~ > > 140b

I !\
120 140b-120

150a i50b 150a 150b
' ,) \ . .l \

130a" ,...330 Cache I Replica
...

SSD Cache I Repiica I ... -
1>-HDD HOD HOD HDD ! ...

130b./
I

110b ___.-· "-.......111 , ,Ob

FIG. 1

110a

FIG. 2B

US 2018/0069944 Al

100
y----·

.... ,- 130a

'--130b

200b ,,,-~

S3
05

/
36

0

S3
02

-

S3
01

 ··

-~
30

0

!"
'--

--
--

--
'"C

I I

I

C
ac

he
 P
ar

tit
io

n
:

[R
ep

lic
a P

ar
tit

io
n

(f
or

 Lo
ca

l V
rv

ls
) :

 3
70

 --
-.

.,
(f

or
 O

th
er

 N
od

es

~~
~[

···
·+

···
+

··+
-·

·l·
-·

J!
l..

J
...

) s
 ~ ..

...

L.
..l

14

0a
 ,

 '-
,.,

-·
-S

30
6

('-
!

C
0

't
j"

t,

0

2
~
~
2
~

>
>

>
>

>

36
0-

, ..
. {~

+

[R
ep

lic
a P

ar
tti

on

(f
or

 O
th

er
 N

od
es

-
ii

O
bi

I
I

l
~

l
l

l/
11

0 b2

~
··N

0?
-t

j"l
{)

I
~
~
~
~
~
!

>
>

>
>

>
:

I
I

'--
--

--
--

-.
I!

F
IG

. 3

38
0

""
O

~
 ...
..

('
D

 =

...
.. t 'e

 -....

(')

~
 ...
.. ...
.

0 =

""
O

=

O

" -....

(')

~
 ...
.. ...
.

0 =

~

~
 :-
:

~C
IO

N

0 ...
.

C
IO

rJ
J =

('
D

('

D
 ...
..

N

0 ...
.

.i;
...

c rJ
J

N

0 ...
.

C
IO

...

_
0 0 O

'I
l,O

l,O

.i;

...

.i;
...

>
 ...
.

Patent Application Publication Mar. 8, 2018 Sheet 3 of 4

/31403
,_..--S1402

140a
\ 1 f

S'1401-

" ,J SOD
V HOD

FIG. 4A

/--S2404

140a S2401 ~,

~-'-'--
• • · --X SOD -------------------v· ·····-·········-···· ~ ··-.... ·········-···········

S2403-.,.. HOD

1i0a··.../

140a
\.

\
140b

S2402 - ·-··-·\._··-··-·--·-·--·--·-·-··
"~.1 SOD

~--1

V HOD

\
140b

FIG. 4B

140a
1 f)

SOD
HDO

'----11 Ob

140a
I 'r) . '

SOD
HDD

"--1i0b

l ~~~ I
, r

1------1 ! ~~~ 1
'-110b2

FIG. 4C

US 2018/0069944 Al

400a
,.-·-·--'

400b .,---·

Patent Application Publication Mar. 8, 2018 Sheet 4 of 4 US 2018/0069944 Al

400d

14oa S4401

s4~q2F . ~~ J : U3E}J-
110a- 1) 0.. A"'--s4403 110b1

't o v"

r···_.,

C "140a ,--··S4404 140a
\)

' ... I SOD

I
SOD ' ..

HOD HOD
'-. .. A 110bL

FIG. 4D

/-590 ~-----
1 aC I (1-a)C I

'
SOD SOD
HOD HOD

1·1oa-j '-1'10b

FIG. 5

10 Makespan

C ., (1 ···a)C aC
· na) = -· - gra' -A2 ·.,. , ' A2 \ l - l\,.
"' I '
l, !--...---+------'I---------.....,
A1

603~C

A1 + A2

~--~---~-------a
0 604··~ A1

A1 +A2

FIG. 6

US 2018/0069944 Al

AUTOMATIC DATA REPLICA MANAGER IN
DISTRIBUTED CACHING AND DATA

PROCESSING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application claims priority to, and the benefit
of, U.S. Provisional Application 62/404,167, filed on Oct. 4,
2016 in the U.S. Patent and Trademark Office, the entire
content of which is incorporated herein by reference.

FIELD

[0002] One or more aspects of embodiments according to
the present invention generally relate to datacenter operation
including data storage and data recovery.

BACKGROUND

[0003] In the field of memory storage, datacenters that
store large amounts of memory seek to accomplish high
capacity, high performance, low power usage, and low cost.
[0004] Replication is the process of synchronizing data
across multiple storage nodes of a datacenter cluster, which
provides redundancy, and which increases data availability
from the loss of a single storage node. Replication allows the
system to recover from hardware failure and service inter
ruptions, and even to increase read capacity. Thus, in an era
of big data and cloud computing, storing multiple replicas
(e.g., replicated data sets) is a common strategy for reliabil
ity and availability of datasets stored over remote cloud
storage.
[0005] Additionally, certain databases, such as bank, stock
market, and military databases, require that the data stored
therein is replicable and is reliably stored.

SUMMARY

[0006] Aspects of embodiments of the present disclosure
are directed toward datacenter operation, including data
storage and data recovery.
[0007] According to an embodiment of the present inven
tion, there is provided a method of data storage, the method
including determining a latency distance from a primary
node to each of two or more replica nodes, choosing a
preferred replica node of the two or more replica nodes
based on the determined latency distances, and write-cach
ing data into the preferred replica node.
[0008] The two or more replica nodes may each have a
smaller latency distance to the primary node than all other
available nodes of a datacenter cluster including the primary
node and the two or more replica nodes.
[0009] Each node of a datacenter cluster as a primary node
may have a ranking of preferred replica nodes that are
ranked based on network delays associated with paths
between the primary node and respective ones of the replica
nodes, and each node of the datacenter cluster may include
a solid-state drive tier as a cache tier including a cache
partition for storing data of local virtual machines and a
replica partition for storing replica data from other nodes,
and a hard disk drive tier as a back end storage tier.
[0010] Each node may include a physical host for running
multiple virtual machines, each of the virtual machines
sharing the solid-state drive tier and the hard disk drive tier
in a respective node of the datacenter cluster, the method

1
Mar. 8, 2018

further including periodically updating the rankings of the
preferred replica nodes to account for changes in network
delays.
[0011] The rankings of the preferred replica nodes may be
further based on workload characteristics including access
frequency of data associated with the nodes and service level
agreements (SLAs) associated with the nodes.
[0012] According to another embodiment of the present
invention, there is provided a method for enabling fault
tolerance of a datacenter cluster caching system, the method
including detecting a failure of the datacenter cluster, and
performing load balancing among nodes of the datacenter
cluster in accordance with the detected failure by moving
data among storage tiers of the nodes, wherein the load
balancing is performed without pausing a subsystem corre
sponding to the detected failure, and without copying an
entirety of a dataset of a node of the datacenter cluster
corresponding to the detected failure.
[0013] The method may further include migrating replica
data from a first replica node in the datacenter cluster to a
second replica node in a datacenter cluster by writing new
incoming data on the second replica node, and maintaining
unchanged cached data on the first replica node.
[0014] The method may further include evicting victim
data from a solid-state drive of a primary node, receiving the
new incoming data at the primary node, writing the new
incoming data to a hard disk drive of the primary node, and
removing the victim data from a solid-state drive of the first
replica node.
[0015] The detected failure may include a virtual machine
crash on a primary node of the datacenter cluster, and the
method may further include writing dirty data from a
solid-state drive of the primary node to a hard disk drive of
the primary node, maintaining the dirty data in a solid-state
drive of a replica node, flagging the dirty data in the
solid-state drive of the replica node as nondirty, restarting
the crashed virtual machine on the primary node, and
forwarding incoming I/0 requests to the solid-state drive of
the primary node and to the solid-state drive of the replica
node.
[0016] The detected failure may include a cache device
failure on a primary node of the datacenter cluster such that
information cannot be written to the primary node, and the
method may further include writing dirty data from a
solid-state drive of a replica node of the datacenter cluster to
a hard disk drive of the primary node, maintaining the dirty
data in the solid-state drive of the replica node, flagging the
dirty data as nondirty, broadcasting the information to asso
ciated nodes of the datacenter cluster, and writing back dirty
data from respective solid-state drives of the associated
nodes of the datacenter cluster to respective hard disk drives
of the associated nodes.
[0017] The method may further include flagging data in
the solid-state drives of the associated nodes with a nondirty
flag, replacing the solid-state drive on the primary node,
continuing to write incoming I/0 requests to the solid-state
drive of the primary node and the solid-state drive of the
replica node, and writing new replica data from the associ
ated nodes to the solid-state drive of the primary node.
[0018] The detected failure may include a cache device
failure on a first replica node of the datacenter cluster, and
the method may further include disconnecting a primary
node of the datacenter cluster, writing back dirty data from
a solid-state drive of the primary node to a hard disk drive

US 2018/0069944 Al

of the primary node, finding a remote second replica node of
the datacenter cluster, storing the dirty data in a solid-state
drive of the second replica node, flagging the dirty data in
the solid-state drive of the second replica node as nondirty,
and continuing to write incoming I/0 requests to the solid
state drive of the primary node and the solid-state drive of
the second replica node.

[0019] Finding a remote second replica node of the data
center cluster may include using a dynamic evaluation
process.

[0020] The detected failure may include a communication
failure between a primary node of the datacenter cluster and
a first replica node of the datacenter cluster, and the method
may further include writing back dirty data from a solid
state drive of the primary node to a hard disk drive of the
primary node, finding a second replica node to replace the
first replica node, writing I/0 requests to a solid-state drive
of the primary node and a solid-state drive of the second
replica node, and broadcasting to all nodes of the datacenter
cluster a request to release all old replica data corresponding
to the first replica node.

[0021] Finding the second replica node may include using
a dynamic evaluation process.

[0022] According to another embodiment of the present
invention, there is provided a method of using replicated
data to enable parallel prefetching from multiple nodes of a
datacenter cluster, the method including splitting a dataset
into two parts, and loading each of the two parts of the
dataset from a corresponding node.

[0023] The corresponding nodes for each of the two parts
of the dataset may include a primary node of the datacenter
cluster, and a replica node of the datacenter cluster.

[0024] C may be a total size of the dataset, aC may be a
size of the one of the two parts from a solid-state drive of the
primary node, A1 may be an access speed of the solid-state
drive of the primary node, and A2 may be an access speed of
a solid-state drive of the replica node, and the method may
further include triggering parallel prefetching when C/A1 is
greater than or equal to a maximum of aC/A 1 and (1-a)C)/

"-2·
[0025] A1 and A2 may each account for corresponding
network delays.

[0026] The method may further include achieving a net
work makespan of

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1 is a block diagram depicting a topological
structure of a datacenter cluster, according to an embodi
ment of the present invention;

[0028] FIG. 2A depicts a method of selecting and assign
ing replica nodes of a datacenter cluster using a ring struc
ture, according to an embodiment of the present invention;

[0029] FIG. 28 depicts a method of selecting and assign
ing replica nodes of a datacenter cluster using a network
structure, according to an embodiment of the present inven
tion;

2
Mar. 8, 2018

[0030] FIG. 3 is a block diagram depicting an online
migration cache policy, according to an embodiment of the
present invention;
[0031] FIGS. 4A-4D are block diagrams depicting data
recovery for different scenarios, according to one or more
embodiments of the present invention;
[0032] FIG. 5 is a block diagram depicting an example of
using replicate data to enable parallel prefetching from
multiple nodes, according to an embodiment of the present
invention; and
[0033] FIG. 6 is a graphical depiction of mathematical
equations for finding an optimized solution of stream divi
sion, according to an embodiment of the present invention.

DETAILED DESCRIPTION

[0034] Features of the inventive concept and methods of
accomplishing the same may be understood more readily by
reference to the following detailed description of embodi
ments and the accompanying drawings. Hereinafter,
example embodiments will be described in more detail with
reference to the accompanying drawings, in which like
reference numbers refer to like elements throughout. The
present invention, however, may be embodied in various
different forms, and should not be construed as being limited
to only the illustrated embodiments herein. Rather, these
embodiments are provided as examples so that this disclo
sure will be thorough and complete, and will fully convey
the aspects and features of the present invention to those
skilled in the art. Accordingly, processes, elements, and
techniques that are not necessary to those having ordinary
skill in the art for a complete understanding of the aspects
and features of the present invention may not be described.
Unless otherwise noted, like reference numerals denote like
elements throughout the attached drawings and the written
description, and thus, descriptions thereof will not be
repeated. In the drawings, the relative sizes of elements,
layers, and regions may be exaggerated for clarity.

[0035] It will be understood that, although the terms
"first," "second," "third," etc., may be used herein to
describe various elements, components, regions, layers and/
or sections, these elements, components, regions, layers
and/or sections should not be limited by these terms. These
terms are used to distinguish one element, component,
region, layer or section from another element, component,
region, layer or section. Thus, a first element, component,
region, layer or section described below could be termed a
second element, component, region, layer or section, with
out departing from the spirit and scope of the present
invention.

[0036] Spatially relative terms, such as "beneath,"
"below," "lower," "under," "above," "upper," and the like,
may be used herein for ease of explanation to describe one
element or feature's relationship to another element(s) or
feature(s) as illustrated in the figures. It will be understood
that the spatially relative terms are intended to encompass
different orientations of the device in use or in operation, in
addition to the orientation depicted in the figures. For
example, if the device in the figures is turned over, elements
described as "below" or "beneath" or "under" other ele
ments or features would then be oriented "above" the other
elements or features. Thus, the example terms "below" and
"under" can encompass both an orientation of above and
below. The device may be otherwise oriented (e.g., rotated

US 2018/0069944 Al

90 degrees or at other orientations) and the spatially relative
descriptors used herein should be interpreted accordingly.
[0037] It will be understood that when an element, layer,
region, or component is referred to as being "on," "con
nected to," or "coupled to" another element, layer, region, or
component, it can be directly on, connected to, or coupled to
the other element, layer, region, or component, or one or
more intervening elements, layers, regions, or components
may be present. In addition, it will also be understood that
when an element or layer is referred to as being "between"
two elements or layers, it can be the only element or layer
between the two elements or layers, or one or more inter
vening elements or layers may also be present.
[0038] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the present invention. As used herein, the
singular forms "a" and "an" are intended to include the
plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms
"comprises," "comprising," "includes," and "including,"
when used in this specification, specify the presence of the
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. As used
herein, the term "and/or" includes any and all combinations
of one or more of the associated listed items. Expressions
such as "at least one of," when preceding a list of elements,
modify the entire list of elements and do not modify the
individual elements of the list.
[0039] As used herein, the term "substantially," "about,"
and similar terms are used as terms of approximation and not
as terms of degree, and are intended to account for the
inherent deviations in measured or calculated values that
would be recognized by those of ordinary skill in the art.
Further, the use of "may" when describing embodiments of
the present invention refers to "one or more embodiments of
the present invention." As used herein, the terms "use,"
"using," and "used" may be considered synonymous with
the terms "utilize," "utilizing," and "utilized," respectively.
Also, the term "exemplary" is intended to refer to an
example or illustration.
[0040] When a certain embodiment may be implemented
differently, a specific process order may be performed dif
ferently from the described order. For example, two con
secutively described processes may be performed substan
tially at the same time or performed in an order opposite to
the described order.
[0041] The electronic or electric devices and/or any other
relevant devices or components according to embodiments
of the present invention described herein may be imple
mented utilizing any suitable hardware, firmware (e.g. an
application-specific integrated circuit), software, or a com
bination of software, firmware, and hardware. For example,
the various components of these devices may be formed on
one integrated circuit (IC) chip or on separate IC chips.
Further, the various components of these devices may be
implemented on a flexible printed circuit film, a tape carrier
package (TCP), a printed circuit board (PCB), or formed on
one substrate. Further, the various components of these
devices may be a process or thread, running on one or more
processors, in one or more computing devices, executing
computer program instructions and interacting with other
system components for performing the various functional-

3
Mar. 8, 2018

ities described herein. The computer program instructions
are stored in a memory which may be implemented in a
computing device using a standard memory device, such as,
for example, a random access memory (RAM). The com
puter program instructions may also be stored in other
non-transitory computer readable media such as, for
example, a CD-ROM, flash drive, or the like. Also, a person
of skill in the art should recognize that the functionality of
various computing devices may be combined or integrated
into a single computing device, or the functionality of a
particular computing device may be distributed across one
or more other computing devices without departing from the
spirit and scope of the exemplary embodiments of the
present invention.
[0042] Unless otherwise defined, all terms (including tech
nical and scientific terms) used herein have the same mean
ing as commonly understood by one of ordinary skill in the
art to which the present invention belongs. It will be further
understood that terms, such as those defined in commonly
used dictionaries, should be interpreted as having a meaning
that is consistent with their meaning in the context of the
relevant art and/or the present specification, and should not
be interpreted in an idealized or overly formal sense, unless
expressly so defined herein.
[0043] FIG. 1 is a block diagram depicting a topological
structure of a datacenter cluster, according to an embodi
ment of the present invention.
[0044] Referring to FIG. 1, a datacenter cluster 100
includes multiple nodes 110 arranged in a cluster. Each node
110 may be a physical host (e.g., a server) running multiple
virtual machines (VMs) 120. The VMs 120 may be run on
either a type-I hypervisor or a type-2 hypervisor. For
example, the host used to run the VMs 120 in the present
embodiment is a type-I implementation (e.g., the present
embodiment may use ESXi hosts for each node 110).
[0045] Inside each node 110, there may be two tiers 130 of
data storage devices/memory devices 140. The two storage
tiers 130 may include a solid-state drive (SSD) tier 130a,
and a hard disk drive (HDD) tier 130b. It should be noted
that, although SSDs and HDDs are used to describe the
various embodiments below, other embodiments may use
different cache/tier devices and/or memory devices.
[0046] Each storage tier 130 includes one or more memory
devices 140. For example, the SSD tier 130a may include
one or more SSDs 140a, and the HDD tier 130b may include
one or more HDDs 140b. RAID mode disks (e.g., disks
operating as a redundant array of independent disks) can
also be adopted in each of the storage tiers 130. VMs 120
share the SSD tier 130a and the HDD tier 130b in each
respective node 110. The SSD tier 130a may be used as a
cache tier, and the HDD tier 130b may be used as a backend
storage tier.
[0047] Inside the SSD tier 130a there are two partitions
150. The two partitions 150 include a cache partition 150a,
which is for storing data for the local VMs 120, and a replica
partition 150b, which is for storing replica data from other
nodes 110. In the present embodiment, only the SSD tier
130a is used to store replica data from other nodes 110. This
may be suitable because the access speed of a remote SSD
140a, even when network delay is accounted for, may be
faster than the access speed of a local HDD 140b (e.g., due
to high speed fiber channels associated with the SSDs 140a,
and due to slower speed associated with the more durable
HDDs 140b).

US 2018/0069944 Al

[0048] According to different embodiments of the present
invention, different approaches may be used to design the
structure of the topology of the datacenter cluster 100. The
type of approach that is used may be chosen by determining
how to select replica nodes 110, how many replicas nodes
110 are suitable for the constraints of the system, and how
to assign replica data to the replica nodes 110.

[0049] FIG. 2A depicts a method of selecting and assign
ing replica nodes of a datacenter cluster using a ring struc
ture, according to an embodiment of the present invention.

[0050] Referring to FIG. 2A, a first approach is a directed
ring structure 200a, which can be either a user-defined
structure or a system-defined structure. The ring structure
200a may be thought of as a linear structure. A system
defined ring structure 200a may be based on geographic
"distance" parameters (e.g., a latency distance based on an
effective distance corresponding to a total network delay).
The logical ring structure 200a shown defines an order of
preference between a primary node 110a and replica nodes
110b. Caching may be performed by using a local SSD 140a
with a copy replicated to another replica node 110b in the
ring structure 200a. Each node 110 has two neighbors (e.g.,
a replica node 11 Ob on each side of each primary node 11 Oa),
and replicated data may be stored on one or both of the
neighboring replica nodes 110b. The primary node 110a
searches for the replica nodes 110b of the ring structure 200a
in order of geographic distance/latency distance until a
replica node 110b is found that can be used in the event that
the primary node 110a is unsuccessful during the process of
building the ring cluster 200a. Once the primary node 110a
finds a suitable replica node 110b, the primary node 110a
may begin write-caching independently of what the remain
ing replica nodes 110b are doing.

[0051] FIG. 28 depicts a method of selecting and assign
ing replica nodes of a datacenter cluster using a network
structure, according to an embodiment of the present inven
tion.

[0052] Referring to FIG. 28, a second approach is directed
to a network structure 200b. The ring structure 200a shown
in FIG. 2A is effectively a linear approach, because the
primary node 110a has only one or two directions to find
replica nodes 110b (e.g., a previous replica node 110b or a
next replica node 110b). The network structure 200b shown
in FIG. 28, however, provides additional flexibility by
allowing for access by the primary node 110a to a larger
number of different replica nodes 110b. The additional
access may be achieved by letting the different nodes 110
maintain a list of preferred replica nodes 110b. Further, it
should be noted that the cluster structure in a network
structure 200b is not limited to the ring-like orientation
shown. For example, the network structure 200b can be
either symmetric or asymmetric.

[0053] In structuring the network structure 200b, a dis
tance matrix may be used to rank each path between nodes
110 (see Table 1, below). Accordingly, each node 110 acting
as a primary node 110a may attempt to use multiple different
replica nodes 110b based on an order corresponding to the
distance matrix.

[0054] The distance matrix for each node 110, may be
thought of as including scores or rankings that are calculated
based on multiple parameters (e.g., based on network delays
between respective nodes 110). These scores/rankings effec
tively reflect an abstract meaning of the aforementioned

4
Mar. 8, 2018

geographical distance/latency distance. The distance matrix
may be periodically updated through runtime measurement.

[0055] A distance matrix of an example of the present
embodiment may be seen in Table 1 below. For example, a
first node as a primary node 11 Oa may first seek to use a
second node as a replica node 110b, followed by a fourth
node, and then a third node. However, the second node,
when acting as a primary node 110a, may first seek to use
the fourth node as a replica node 110b, followed by the third
node, and then the first node. Furthermore, the third node,
when acting as a primary node 110a, may initially seek the
fourth node, then the second node, and then the first node as
a replica node 110b, while the order for the fourth node,
when acting as a primary node 110a, may be from the first
node to the third node to the second node.

From

2

3

4

TABLE 1

2

2

3

To

3

2

2

4

2

[0056] Different processes may be used for assigning a
preferred order of the replica nodes 110b for each node 110
as a primary node 110a. For example, if only one replica
node 110b is sufficient for each primary node 110a, then
each node 110 may select its "closest" node as its replica
node 110b. As another example, if a large number of nodes
110 choose a same single node 110 (or choose a small subset
of nodes 110) as the preferred replica node(s) 110b, a
maximum number of replica nodes per primary node may be
set.

[0057] Accordingly, the network structure 200b may be
set such that each primary node 110a has only one replica
node 110b, and such that all nodes 110 have the same
hardware resources (e.g., a homogeneous cluster). However,
the network structure 200b may also work in a heteroga
mous environment.

[0058] According to another embodiment, a multiple ser
vice-level agreement (SLA) network approach may be used.
The multiple-SLA network approach further protects data
consistency and atomicity, and improves the previous net
work structure approach discussed with reference to FIG.
28. A SLA may be a part of a standardized service contract
where a service is formally defined. Each node 110 may
have more than one replica node 110b, and the replica nodes
110b may be determined or assigned based on workload
characteristics and the SLA (e.g., based on how much a
corresponding client or customer pays, as preferential treat
ment may be purchased, and based on a corresponding
workload temperature). Table 2 shows a decision table for
different cases, which may be used to set up the cluster
multiple-SLAnetwork approach, according to an example of
an embodiment of the present invention.

US 2018/0069944 Al

TABLE 2

Trace

Case SLA Temper- Destination # of

Degree ature SSDp SSDRl SSDR2 HDDp Replica

,/ ,/ ,/

2 ,/ ,/ 1
3 ,/ ,/ ,/ ,/ (,/) 1(2)
4 ,/ ,/ ,/ (,/) 1(2)

[0059] A SLA degree may be related by assigning a level
of importance of each node 110. The present embodiment
can handle multiple SLA levels by using multiple replica
approaches. The present example has only two degrees (e.g.,
important and not important). In other embodiments, more
fine-grained degrees of SLAs may be set. Moreover, an
online-changing SLA can also be adopted into embodiments
of the present invention.
[0060] Additionally, "data temperature" may be used as an
indicator for classifying data into two (or more) categories
based on the access frequency of the data (e.g., "hot data"
has a frequent access pattern, and "cold data" is occasionally
queried).
[0061] A write back policy may be used such that eviction
from one SSD 140a to another SSD 140a when the SSD
140a is full allows for the data to be simply removed. To
avoid affecting write-backs from a SSD 140a to a HDD
140b, and to avoid affecting fetching operations from a HDD
140b to a SSD 140a, a lower priority may be established for
replicas writing to the HDD. Many techniques may be
adopted to improve performance of a write-to-HDD queue.
[0062] A main procedure of a cache policy may be based
on the multiple-SLAnetwork approach. As discussed above,
the present embodiment may support more than one replica
node 110b for each primary node 110a, and the present
embodiment may be expanded to any number of replica
nodes 110b to support more finely grained SLAs. Accord
ingly, the present embodiment is able to switch between two
different cache modes, namely a runtime mode and an online
migration mode.
[0063] The datacenter cluster 100 may periodically check
for the existence of a "migration trigger" condition. If it is
determined that the "migration trigger" condition exists, one
of the two replica nodes 100b is selected as an "overheat
node," and a next available replica node 110b is sought.
After that, a migration mode cache policy may be initiated.
If it is determined that an old replica node 11 Ob no longer has
any "out-of-date" replica data, then the migration mode
cache policy may be turned off, while the runtime mode
cache policy is run in all other cases.
[0064] In case #s 3 and 4 of Table 2, above, it may be
assumed that crashes/failures of VMs 120 mainly affect
cached data on the SSDs 140a, and do not affect data on the
HDD 140b. In the cache policy of the present embodiment,
there are only three cases where the cached data is written
to the HDD 140b (e.g., during eviction write back, during
migration time, and when the queued replica is written to
HDD 140b).
[0065] A runtime mode cache policy may be thought of as
a normal mode, or a default mode, of the datacenter cluster
100. The present embodiment may first search a new I/0
request in a local SSD VM partition (e.g., in the SSD 140a
of the primary node 11 Oa). If it is determined that a cache hit

5
Mar. 8, 2018

is returned, the data may be fetched from the SSD 140a of
the primary node 11 Oa for a read I/0 operation, or the new
data may be updated to existing cached copies in the SSD
140a of the primary node 110a and to one or more replica
nodes 110b.
[0066] When it is determined that there is a cache miss,
victim data may initially be selected to be evicted from the
primary node 110a and from the replica nodes 110b. Then,
only updated (dirty) data may be written into the HDD 140b
of the primary node 110a. Different replacement algorithms
may be used for implementation of the victim data selection
process. The selected victim data may then be written back
to the HDD 140b of the primary node 110a if the victim data
is determined to be dirty. That is, the victim data may be
updated in the SSD 140a while not being updated in the
HDD 140b. Thereafter, all copies of the victim data may be
deleted from both local SSDs 140a and remote SSDs 140a.
Then the new data may be inserted into both the primary
node 110a and the replica node(s) 110b.
[0067] In detail, if the victim data corresponds to a read
I/0 operation, then the victim data may simply be fetched
from the HDD 140b to the SSDs 140a of the primary node
110a and the replica nodes 110b. Additionally, the fetched
cached data may be returned to a user buffer in the memory.
If the victim data corresponds to a write I/0 operation, the
victim data may simply be written to the SSDs 140a of the
primary node 110a, and also to all corresponding replica
nodes 110b, while being flagged as being "dirty" data,
because the data is updated new data.
[0068] FIG. 3 is a block diagram depicting an online
migration cache policy, according to an embodiment of the
present invention.
[0069] Referring to FIG. 3, when migrating replica data
from one replica node 110b to another replica node 110b, a
fusion cache technique 300 may be used. The fusion cache
technique 300 is a cost-efficient, lazy migration scheme.
Accordingly, new incoming data 360 may be written only on
a new replica node (e.g., a second replica node) 110b2
(S301), and unchanged cached data/victim data 370 may be
kept on an old replica node (e.g., a first replica node) llObl
(S302). Accordingly, the present embodiment is able to
mirror the primary node 110a by using a fusion cache 380
consisting of two nodes (e.g., the new replica node 110b2
and the old replica node llObl). By not pausing the system
while performing the copying of all existing replica data
pieces from the old replica node llObl to the new replica
node 110b2 (regardless of whether these data pieces are
needed), the proposed fusion cache can save system band
width.
[0070] FIG. 3 shows that only one replica node (e.g., the
old replica node llObl) is to be "migrated out" with the new
replica node 110b2 receiving the data 370 that is migrated
out, although the present embodiment may be applied to a
system/datacenter cluster 100 in which more replica nodes
110b exist, including use of a HDD 140b in a replica node
110b. The primary node 110a may migrate its existing data
piece/victim data 370 to a new replica node 110b2. When
new data 360 comes to the primary node 110a (S303), victim
data 370 may first be evicted from the SSD 140a of the
primary node 110a (S304), and the new data 360 may be
written to the HDD 140b of the primary node 110a (S305).
Meanwhile, the new data 360 may also be written to the new
replica node 110b2 (S301), and the old replica node llObl
may be instructed to simply remove the victim data 370 from

US 2018/0069944 Al

its SSD 140a (S306). The fusion cache 380 is a unibody of
the new replica node llObl, and the old replica node 110b2
is a mirror of the primary node 110a, where the new replica
node llObl eventually replaces the old replica node 110b2.
[0071] By using the online migration mode cache policy
300, data is able to be migrated from the old replica node
110b2 to the new replica node llObl, while a remaining
replica node 110b may remain as a replica node 110b that is
used by the primary node 110a (along with the new replica
node llObl). For a two-SSD-replica node prototype, both
replica nodes llObl and 110b2 can be the migration sources.
[0072] FIGS. 4A-4D are block diagrams depicting data
recovery for different scenarios, according to one or more
embodiments of the present invention.
[0073] Embodiments of the present invention may use a
write back caching policy to maximize I/0 performance, as
writing through to the HDD 140b would otherwise slow
down the fetching I/0 operations in the queue. However,
storage in the SSD 140a may be relatively unsafe, even
though SSD storage preserves stored data after losing power.
Such a lack of safety may not acceptable in some situations
(e.g., bank databases, stock market databases, and military
databases). Accordingly, data may be replicated in remote
SSDs 140a to prepare for recoveries for different failures.
The possible types of failures may be categorized into the
four scenarios discussed with respect to FIGS. 4A-4D,
respectively.
[0074] Referring to FIG. 4A, a first recovery scenario may
be referred to as a "VM crash on the primary node" scenario
400a. In the present scenario 400a, the VMDK may simply
be closed out. Then, the "dirty" data may be written back
from the SSD 140a of the primary node 110a to the HDD
140b of the primary node 110a (S1401). The dirty data may
be kept in the SSD 140a of the replica node 110b while being
flagged as "nondirty" (S1402). The crashed VM may then be
restarted on the primary node 110a, and incoming I/0
requests may continue to be forwarded to both the SSD 140a
of the primary node 110a and the SSD 140a of the replica
node 110b (S1403).
[0075] Referring to FIG. 48, a second recovery scenario
may be referred to as a "primary node cache storage device
failure" scenario 400b, which will result in an inability to
continue write caching. In the present scenario 400b, the
"dirty" data is first written back from the SSD 140a of the
replica node 110b to the HDD 140b of the primary node
110a (S2401), and the data is kept in the SSD 140a of the
replica node 110B while being flagged as "nondirty." This
"unavailable" information is then broadcast to the datacenter
cluster 100 to let those nodes 110 having replicas in this
failed primary node 110a (e.g., associated nodes 110c) to
write back "dirty" data from their own SSD 140a to HDD
140b while keeping the data in their own SSD 140a with a
"nondirty" flag (S2402). The SSD 140a on primary node 110
is then found and replaced (S2403). After that, incoming I/0
requests continue to be written on both of the SSD 140a of
the primary node 11 Oa and the
[0076] SSD 140a of the replica node 110b (S2404), while
the associated nodes 110c write new replicas to the SSD
140a of the primary node 110a (S2405).
[0077] Referring to FIG. 4C, a third recovery scenario
400c corresponds to when an old replica node llObl detects
a cache device/SSD 140a failure (S3401). In the present
example, the primary node 110a is disconnected, and any
future connection attempts from the primary node 11 Oa are

6
Mar. 8, 2018

rejected by an error response. First, the "dirty" data is
written back from the SSD 140a of the primary node 110a
to the HDD 140b of the primary node 110a (S3402). That
data is also stored, while being flagged as "nondirty" flag
data, in the SSD 140a of a remote new replica node 110b2,
which may be found using a dynamic evaluation process
(S3403). Thereafter, incoming I/0 requests continue to be
written on both the SSD 140a of the primary node 110a and
the SSD 140a of the new replica node 110b2 (S3404).
[0078] Referring to FIG. 4D, a fourth recovery scenario
400d corresponds to a communication failure between a
primary node 110a and an old replica node llObl. When the
primary node 110a detects a non-recoverable communica
tion failure between the primary host of the primary node
110a and the replica host of the replica node llObl (S4401),
it may not be possible to continue write caching. To recover
from such failure, a daemon of the datacenter cluster 100
may write back "dirty" data from the SSD 140a of the
primary node 110a to the HDD 140b of the primary node
llOa to ensure all cached data is updated to the back end
HDD 140b (S4402). Then the daemon may start a dynamic
evaluation process to find a new replica host, and to find a
new replica node 110b2 to replace the unreachable old
replica node llObl (S4403). The daemon then continues to
use the SSDs 140a of both the primary node 110a and the
new replica node 110b2 to cache I/Os following the "fusion
cache" design in migration policy (S4404).
[0079] Finally, the daemon may broadcast to the network
to release all old replicas on the unreachable the SSD 140a
of the replica node llObl.
[0080] FIG. 5 is a block diagram depicting an example of
using replicate data to enable parallel prefetching from
multiple nodes, according to an embodiment of the present
invention.
[0081] Referring to FIG. 5, replicated data can also be
used to enable parallel prefetching 500 from multiple nodes
110, such as for read operations. In the present example, the
data (e.g., data of a dataset) 590 is split into two parts 590a
and 590b, and each part of the data 590 is loaded from its
corresponding primary node 110a and replica node 110b.
[0082] For example, for a two-node case, it may be useful
to reduce the total I/0 time (e.g., the makespan of each I/0
request). The makespan of parallel prefetching 500 is less
than simply reading an entire piece of data from the primary
node 110a. In the present example, a total size of the data
590 is "C," the access speed of the SSD 140a of the primary
node 110a is "Ai'' (e.g., in GB/sec), and the access speed of
the SSD 140a of the replica node 110b, while accounting for
network delays, is "A2 " (e.g., in GB/sec). Assuming data of
the SSD 140a of the primary node 110a having a size of
"aC" is loaded, the problem may be solved by determining
a maximum between aC/A 1 and (1-a)C/A 2 , where a is
between O and 1, and where A1 2:A2 >0, and where C/A1 2:the
maximum between aC/A 1 and (1-a)C/A 2 .

[0083] Determining the maximum between aC/A 1 and
(1-a)C/A 2 shows an objective function for reducing, or
minimizing, an overall makespan of an I/0 request. This
makespan may be determined by the maximum value of the
I/0 operating time of each node involved in the parallel
prefetching (e.g., the primary node and the replica node).
Furthermore, by ensuring that A1 2:A2>0, the local I/0 speed
(e.g., the speed associated with the primary node) is greater
than the remote I/0 speed (e.g., the speed associated with the
replica node). The speeds associated with the respective

US 2018/0069944 Al

nodes may account for, or may include, network delay.
Alternatively, a constraint may simply be that A1>0 and that
A2>0 (e.g., if the remote I/0 speed associated with the
replica node is higher than the I/0 speed associated with the
primary node, although an optimization result may remain
the same. Additionally, by having C/A1 ;;ea maximum of
aC/A 1 and (1-a)C/A 2 , parallel prefetching may only be
triggered when resulting in a reduction of the makespan.

[0084] FIG. 6 is a graphical depiction of mathematical
equations for finding an optimized solution of stream divi
sion, according to an embodiment of the present invention.

[0085] Referring to FIG. 6, the abovementioned functions,
constrains, and equations may be graphically represented,
where lines 601 and 602 represent an objective function
curve, and where line 605 represents C/A1 . As shown in FIG.
6, a minimum point occurs at a cross point of the line 601
and the line 602. Accordingly, the minimum point may be
determined by setting aC/A 1 equal to (1-a)C/A 2 . Thereafter,
a minimal makespan may be determined as C/(A1A2) (i.e.,
line 603) when a is equal to A/(A 1 +A2) (i.e., line 604).

[0086] Accordingly, a parallel prefetching policy may be
determined. In some embodiments of the present invention,
a parallel fetching daemon may be used to trigger the
parallel prefetching. The parallel fetching daemon may
periodically check whether the access speed of the SSD of
the replica node (including network delay) is approximately
equal to the access speed of the local SSD of the primary
node by comparing their difference with a preset threshold.
The parallel fetching daemon may also check whether a
current utilization ratio of throughput of the SSD of the
replica node is less than a given operating threshold, and
may approve/trigger parallel prefetching if all of these
conditions are satisfied.

[0087] Furthermore, the parallel fetching daemon may
calculate a branching ratio of data to be loaded from each
node of a datacenter cluster, and may then assign the
branching ratio to each node before beginning to read from
the nodes. Accordingly, embodiments of the present inven
tion may be further extended to a parallel fetching case
involving more than two source nodes. Lastly, embodiments
of the present invention may also work for parallel write
operations with additional synchronization schemes.

[0088] Accordingly, the solutions provided by embodi
ments of the invention described above provide for a data
replica manager designed for distributed caching, and data
processing systems using SSD-HDD tier storage systems.
The embodiments improve the ability of fault tolerance by
storing caches in replica nodes to effectively recover from
disasters while enhancing performance in the SSD space.
Furthermore, the embodiments provide at least three
approaches for selecting replica nodes and building a replica
cluster architecture to support multiple SLAs, based on
importance degree, workload temperature, and an abstract
distance matrix, which considers network delay and storage
access latency.

[0089] Embodiments of the present invention can also
automatically perform load-balancing among nodes, and can
conduct seamlessly online migration operation, as opposed
to pausing the subsystem and copying the entire dataset from
one node to the other. The described embodiments therefore
improve fault tolerance ability for cluster caching systems,
and enable successful recovery from four different failure
scenarios. Embodiments of the present invention also allow

7
Mar. 8, 2018

for parallel prefetching from both primary node and replica
node(s) with an optimized prefetching solution for each I/0
path.

What is claimed is:
1. A method of data storage, the method comprising:
determining a latency distance from a primary node to

each of two or more replica nodes;
choosing a preferred replica node of the two or more

replica nodes based on the determined latency dis
tances; and

write-caching data into the preferred replica node.
2. The method of claim 1, wherein the two or more replica

nodes each have a smaller latency distance to the primary
node than all other available nodes of a datacenter cluster
comprising the primary node and the two or more replica
nodes.

3. The method of claim 1, wherein each node of a
datacenter cluster as a primary node has a ranking of
preferred replica nodes that are ranked based on network
delays associated with paths between the primary node and
respective ones of the replica nodes, and

wherein each node of the datacenter cluster comprises:
a solid-state drive tier as a cache tier comprising a

cache partition for storing data of local virtual
machines and a replica partition for storing replica
data from other nodes; and

a hard disk drive tier as a back end storage tier.
4. The method of claim 3, wherein each node comprises

a physical host for running multiple virtual machines, each
of the virtual machines sharing the solid-state drive tier and
the hard disk drive tier in a respective node of the datacenter
cluster, the method further comprising periodically updating
the rankings of the preferred replica nodes to account for
changes in network delays.

5. The method of claim 3, wherein the rankings of the
preferred replica nodes are further based on workload char
acteristics comprising access frequency of data associated
with the nodes and service level agreements (SLAs) asso
ciated with the nodes.

6. A method for enabling fault tolerance of a datacenter
cluster caching system, the method comprising:

detecting a failure of the datacenter cluster; and
performing load balancing among nodes of the datacenter

cluster in accordance with the detected failure by
moving data among storage tiers of the nodes,

wherein the load balancing is performed without pausing
a subsystem corresponding to the detected failure, and
without copying an entirety of a dataset of a node of the
datacenter cluster corresponding to the detected failure.

7. The method of claim 6, the method further comprising:
migrating replica data from a first replica node in the

datacenter cluster to a second replica node in a data
center cluster by:
writing new incoming data on the second replica node;

and
maintaining unchanged cached data on the first replica

node.
8. The method of claim 7, further comprising:
evicting victim data from a solid-state drive of a primary

node;
receiving the new incoming data at the primary node;
writing the new incoming data to a hard disk drive of the

primary node; and

US 2018/0069944 Al

removing the victim data from a solid-state drive of the
first replica node.

9. The method of claim 6, wherein the detected failure
comprises a virtual machine crash on a primary node of the
datacenter cluster, the method further comprising:

writing dirty data from a solid-state drive of the primary
node to a hard disk drive of the primary node;

maintaining the dirty data in a solid-state drive of a replica
node;

flagging the dirty data in the solid-state drive of the replica
node as nondirty;

restarting the crashed virtual machine on the primary
node; and

forwarding incoming I/0 requests to the solid-state drive
of the primary node and to the solid-state drive of the
replica node.

10. The method of claim 6, wherein the detected failure
comprises a cache device failure on a primary node of the
datacenter cluster such that information cannot be written to
the primary node, the method further comprising:

writing dirty data from a solid-state drive of a replica node
of the datacenter cluster to a hard disk drive of the
primary node;

maintaining the dirty data in the solid-state drive of the
replica node;

flagging the dirty data as nondirty;
broadcasting the information to associated nodes of the

datacenter cluster; and
writing back dirty data from respective solid-state drives

of the associated nodes of the datacenter cluster to
respective hard disk drives of the associated nodes.

11. The method of claim 10, further comprising:
flagging data in the solid-state drives of the associated

nodes with a nondirty flag;
replacing the solid-state drive on the primary node;
continuing to write incoming I/0 requests to the solid

state drive of the primary node and the solid-state drive
of the replica node; and

writing new replica data from the associated nodes to the
solid-state drive of the primary node.

12. The method of claim 6, wherein the detected failure
comprises a cache device failure on a first replica node of the
datacenter cluster, the method further comprising:

disconnecting a primary node of the datacenter cluster
writing back dirty data from a solid-state drive of the

primary node to a hard disk drive of the primary node;
finding a remote second replica node of the datacenter

cluster;
storing the dirty data in a solid-state drive of the second

replica node;
flagging the dirty data in the solid-state drive of the

second replica node as nondirty; and

8
Mar. 8, 2018

continuing to write incoming I/0 requests to the solid
state drive of the primary node and the solid-state drive
of the second replica node.

13. The method of claim 12, wherein finding a remote
se~ond replica_ node of the datacenter cluster comprises
usmg a dynamic evaluation process.

14. The method of claim 6, wherein the detected failure
comprises a communication failure between a primary node
of the datacenter cluster and a first replica node of the
datacenter cluster, the method further comprising:

writing back dirty data from a solid-state drive of the
p~imary node to a hard disk drive of the primary node;

findmg a second replica node to replace the first replica
node;

writing I/0 requests to a solid-state drive of the primary
node and a solid-state drive of the second replica node·
and '

broadcasting to all nodes of the datacenter cluster a
request to release all old replica data corresponding to
the first replica node.

15. The method of claim 14, wherein finding the second
replica node comprises using a dynamic evaluation process.

16. A method of using replicated data to enable parallel
prefetching from multiple nodes of a datacenter cluster the
method comprising: '

splitting a dataset into two parts; and
loading each of the two parts of the dataset from a

corresponding node.
17. The method of claim 16, wherein the corresponding

nodes for each of the two parts of the dataset comprise:
a primary node of the datacenter cluster and
a replica node of the datacenter cluster. '
18. The method of claim 17, wherein:
C is a total size of the dataset;
aC is a size of the one of the two parts from a solid-state

drive of the primary node;
A1 is an access speed of the solid-state drive of the primary

node; and
A2 is an access speed of a solid-state drive of the replica

node, the method further comprising triggering parallel
prefetching when C/A1 is greater than or equal to a
maximum of aC/A 1 and (1-a)C)/A 2 .

19. The method of claim 17, wherein A1 and A2 each
account for corresponding network delays.

20. The method of claim 17, further comprising achieving
a network makespan of

C J.1
--when a=-
A1 +J.2 J.1 +J.2.

* * * * *

