
US 20190163636A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0163636 A1

Yang et al . (43) Pub . Date : May 30 , 2019

(54) DYNAMIC CACHE PARTITION MANAGER
IN HETEROGENEOUS VIRTUALIZATION
CLOUD CACHE ENVIRONMENT

(71) Applicant : Samsung Electronics Co . , Ltd . ,
Suwon - si (KR) (57)

(72) Inventors : Zhengyu Yang , Malden , MA (US) ; T .
David Evans , San Marcos , CA (US)

(21) Appl . No . : 15 / 891 , 350
(22) Filed : Feb . 7 , 2018

(52) U . S . CI .
CPC GO6F 12 / 0848 (2013 . 01) ; G06F 17 / 18

(2013 . 01) ; GOOF 2212 / 151 (2013 . 01) ; G06F
2009 / 45583 (2013 . 01) ; G06F 9 / 45558

(2013 . 01)
ABSTRACT

A system is disclosed . The system may include a virtual
machine server , which may include a processor , a memory ,
and at least two virtual machines that may be stored in the
memory and executed by the processor . The virtual machine
server may also include a virtual machine hypervisor to
manage the operations of the virtual machine . The virtual
machine server may also include a cache that may include at
least one storage device . A Dynamic Cache Partition Man
ager (DCPM) may manage the partition of the cache into a
performance guarantee zone , which may be partitioned into
regions , and a spike buffer zone . The DCPM may include a
reusability statistic calculator to calculate a reusability sta
tistic , a comparator to compare the reusability statistic with
a spike threshold , an access statistic calculator to calculate
an access statistic , a spike data identifier to identify data in
the spike buffer zone that satisfies the access statistic , and a
cache partitioner to repartition the cache into a new perfor
mance guarantee zone and a second spike buffer zone for a
new epoch , the second spike buffer zone is large enough to
store the identified data .

Related U . S . Application Data
(60) Provisional application No . 62 / 592 , 355 , filed on Nov .

29 , 2017 .

(51)
Publication Classification

Int . Cl .
G06F 12 / 0846 (2006 . 01)
G06F 1718 (2006 . 01)
G06F 9 / 455 (2006 . 01)

105 . 763way
Network

10 - 2 10 - 3

Storage
Pool

115 - 1 , 115 - 2 115 - 4

Processor Processor Processor
Processor

120 - 1 120 - 2 120 - 3
Receiver

Memory Memory Memory - 4 140
125 - 1 125 - 2 125 - 3

Cache Cache Cache Memory
Transmitter

145

105 .

Network

Patent Application Publication

110 - 2

110 - 3

Storage Pool 135

115 - 1 .

115 - 2

115 - 3

115 - 4

Processor

Processor

Processor

May 30 , 2019 Sheet 1 of 14

Processor

120 - 1 s

120 - 2

120 - 3 y

Receiver

Memory

Memory

Memory
120 - 4 ,

140

125 - 1

125 - 2y

125 - 3

Cache

Cache
J

Cache

Memory
4Transmitter

US 2019 / 0163636 A1

FIG . 1

145

Mori
nazi

Storage Device

Patent Application Publication

115 .

Processor

User Interface

215

Clock

Network Connector

205 m

T210

230 ,

May 30 , 2019 Sheet 2 of 14

Mem . Contr .

VO Engine

120

Memory

US 2019 / 0163636 A1

FIG . 2

Patent Application Publication May 30 , 2019 Sheet 3 of 14 US 2019 / 0163636 A1

305 - 1 305 - 2 305 - 3

110 w App
O / S

App
O / S

App more
O / S - 315

320
Hypervisor DCPM

Daemon325 Cache

335 135

DCPM
Controller
Cache

Storage
Pool

330
FIG . 3

125 ,

Cache

SSD 405 - 1 SSD 4052 SSD 4053 SSD 2054

FIG . 4

125 -
505

Cache 510

Performance Guarantee Zone

Spike Buffer Zone

Patent Application Publication

FIG . 5A Cache 510

Performance Guarantee Zone

Spike Buffer Zone

May 30 , 2019 Sheet 4 of 14

FIG . 5B

125

.

.

.

.

. . . .

. .

. .

. . .

.

. .

.

. . . .

??????

505

Cache 510
Spike Buffer Zone

Performance Guarantee Zone

FIG . 5C

US 2019 / 0163636 A1

Patent Application Publication May 30 , 2019 Sheet 5 of 14 US 2019 / 0163636 A1

325

605 ,

Workload Spike
Detector

Cache Feedback
Tracker

Strategy Switcher

620

Content Update
Controller

FIG . 6

505

510 s

Performance Guarantee Zone

Spike Buffer Zone

Patent Application Publication

710

715

Hits in Performance Guarantee Zone Hits in Spike Buffer Zone Not Hit

505

May 30 , 2019 Sheet 6 of 14

Performance Guarantee Zone

Spike Buffer Zone

US 2019 / 0163636 A1

FIG . 7

505

510

| Performance Guarantee Zone

Spike Buffer Zone

|

Patent Application Publication

805

810

Hits in Performance Guara

Others

-

>

-

- - - - -

- -

- -

- -

- -

- -

-

- -

at

May 30 , 2019 Sheet 7 of 14

K
-

- Qualified Short - Term Hot Bins

Others

505

O - - - - - - -

- - - - - - - - - -

- - -

K

F - - - - - -

- -

- -

-
- - - - - - -

- - - - - - -

Performance Guarantee Zone

Spike Buffer Zone

US 2019 / 0163636 A1

FIG . 8

Patent Application Publication May 30 , 2019 Sheet 8 of 14 US 2019 / 0163636 A1

915

Epoch
N + 1 VM 1 VM 2 VM 3 VM 4

910 - 3 910 - 2

905 . 4

Epoch N VM 1 , VM 2 VM 3 VM 4 go 910 - 2 910 - 3

905 - 3

Epoch 3 VM 1 VM 3 KVM 4
910 - 3 910 - 4 910 - 1 910 - 2

905 - 2

VM4
910 - 4 910 - 2 910 - 3 Epoch 2 (um 1 um 2 . / m3 .

Epoén a uns an , um 2 . . lama la moda 910 - 2 910 - 3

FIG . 9

Patent Application Publication May 30 , 2019 Sheet 9 of 14 US 2019 / 0163636 A1

325
1005 DCPM Daemon ~ 1045

Reusability
Statistic

Calculator
Comparator Spike

Threshold

1015 1010 1020 , 1025

Access
Statistic

Calculator

Spike
Data

Identifier
Cache

Partitioner

1030 . 1035 1040

Percentage
Calculator

Selection
Statistic Identifier

FIG . 10

Patent Application Publication May 30 , 2019 Sheet 10 of 14 US 2019 / 0163636 A1

C Start

1 105 .

i NON Initially divide a cache
into a performance

guarantee zone and a
spike buffer zone

Initially divide the
performance guarantee
zone into regions for

virtual machines

1115

t Determine a reusability
statistic for data in the
cache from a previous

epoch

FIG . 11A * * * * *

Patent Application Publication May 30 , 2019 Sheet 11 of 14 US 2019 / 0163636 A1

1120

Yes \ No Reusability
statistic > = spike

threshold ?

1130

Perform aggressive
allocation strategy

Perform
conservative

allocation strategy

1135

Divide the
performance

guarantee zone into
regions

FIG . 11B

Patent Application Publication May 30 , 2019 Sheet 12 of 14 US 2019 / 0163636 A1

1125 1130

Start Start

1205 1305

Determine an access
statistic (average access
count ?) for data in the
performance guarantee

zone

Determine a
percentage of hits in

the performance
guarantee zone

1210 1310

Identify data in the
spike buffer zone
that satisfies the
access statistic

Determine a
percentage of hits in

the spike buffer
zone

1215 1315

Partition the cache so
that the spike buffer

zone is large enough to
store the identified data

Partition the cache
in proportion to the
percentages of hits

End End

FIG . 12 FIG . 13

Patent Application Publication May 30 , 2019 Sheet 13 of 14 US 2019 / 0163636 A1

Start

1405 .

????????????????????????
Compute the difference
between the number of

bins in the cache
currently and previously

1410 .

Compute the ratio of
the difference and
the current number
of bins in the cache

C End

FIG . 14

Patent Application Publication May 30 , 2019 Sheet 14 of 14 US 2019 / 0163636 A1

1135

Start

1505 . 1520 .

Determine a
selection statistic
(threshold number

of bins ?)

For each virtual machine
identify a percentage of

bins satisfying the
selection statistic

1515 -
1525 ,

Sort the bins
according to the
selection statistic

Divide the performance
guarantee zone into
regions in proportion
with the percentages

End

FIG . 15

US 2019 / 0163636 A1 May 30 , 2019

DYNAMIC CACHE PARTITION MANAGER
IN HETEROGENEOUS VIRTUALIZATION

CLOUD CACHE ENVIRONMENT

RELATED APPLICATION DATA
[0001] This application claims the benefit of U . S . Provi
sional Patent Application Ser . No . 62 / 592 , 355 , filed Nov . 29 ,
2017 , which is incorporated by reference herein for all
purposes .

[0017] FIG . 13 shows a flowchart of an example proce
dure for the DCPM Daemon of FIG . 3 to partition the cache
of FIG . 1 using a conservative allocation strategy , according
to an embodiment of the inventive concept .
[0018] FIG . 14 shows a flowchart of an example proce
dure for the DCPM Daemon of FIG . 3 to calculate a
reusability statistic , according to an embodiment of the
inventive concept .
[0019] FIG . 15 shows a flowchart of an example proce
dure for the DCPM Daemon of FIG . 3 to divide the
performance guarantee zone of FIGS . 5A - 5C into regions
for the virtual machines , according to an embodiment of the
inventive concept .

FIELD
[0002] The inventive concepts relate generally to data
storage , and more particularly to managing caches in virtual
machine servers .

BACKGROUND
[0003] In a shared virtualized storage system that runs
virtual machines (VMs) with heterogeneous I / O demands , it
becomes a critical problem for the system to cost - effectively
partition and allocate cache resources among multiple VMs .
Heterogeneous VMs may have cross - VM impacts when
sharing local cache resources and backend storage arrays .
[0004] A need remains for a way to more accurately
predict VM workload changes and to track cache gains from
past partition solutions .

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] FIG . 1 shows networked machines that may host
virtual machines and use a storage pool , according to an
embodiment of the inventive concept .
[0006] FIG . 2 shows additional details of the machines of
FIG . 1 .
[0007] FIG . 3 shows added detail of one server of FIG . 1
interacting with the storage pool of FIG . 1 , according to an
embodiment of the inventive concept .
[0008] FIG . 4 shows details of the cache of FIG . 1 .
[0009] FIGS . 5A - 5C show various partitions of the cache
of FIG . 1 into performance guarantee zones and spike buffer
zones .
[0010] FIG . 6 shows a high - level operational flow of the
Dynamic Cache Partition Manager (DCPM) Daemon of
FIG . 3 .
[0011] FIG . 7 shows how the cache of FIG . 1 may be
partitioned when there are no workload spikes , according to
an embodiment of the inventive concept .
[0012] FIG . 8 shows how the cache of FIG . 1 may be
partitioned when there are workload spikes , according to an
embodiment of the inventive concept .
[0013] FIG . 9 shows how the performance guarantee zone
of the cache of FIG . 1 may be divided into regions for virtual
machines , according to an embodiment of the inventive
concept .
[0014] FIG . 10 shows details of the DCPM Daemon of
FIG . 3 .
[0015] FIGS . 11A - 11B show a flowchart of an example
procedure for the DCPM Daemon of FIG . 3 to partition the
cache of FIG . 1 , according to an embodiment of the inven
tive concept .
[0016] FIG . 12 shows a flowchart of an example proce
dure for the DCPM Daemon of FIG . 3 to partition the cache
of FIG . 1 using an aggressive allocation strategy , according
to an embodiment of the inventive concept .

DETAILED DESCRIPTION
[0020] Reference will now be made in detail to embodi
ments of the inventive concept , examples of which are
illustrated in the accompanying drawings . In the following
detailed description , numerous specific details are set forth
to enable a thorough understanding of the inventive concept .
It should be understood , however , that persons having
ordinary skill in the art may practice the inventive concept
without these specific details . In other instances , well - known
methods , procedures , components , circuits , and networks
have not been described in detail so as not to unnecessarily
obscure aspects of the embodiments .
[0021] It will be understood that , although the terms first ,
second , etc . may be used herein to describe various ele
ments , these elements should not be limited by these terms .
These terms are only used to distinguish one element from
another . For example , a first module could be termed a
second module , and , similarly , a second module could be
termed a first module , without departing from the scope of
the inventive concept .
[0022] The terminology used in the description of the
inventive concept herein is for the purpose of describing
particular embodiments only and is not intended to be
limiting of the inventive concept . As used in the description
of the inventive concept and the appended claims , the
singular forms “ a , ” “ an , ” and “ the ” are intended to include
the plural forms as well , unless the context clearly indicates
otherwise . It will also be understood that the term " and / or ”
as used herein refers to and encompasses any and all
possible combinations of one or more of the associated listed
items . It will be further understood that the terms " com
prises ” and / or " comprising , " when used in this specification ,
specify the presence of stated features , integers , steps ,
operations , elements , and / or components , but do not pre
clude the presence or addition of one or more other features ,
integers , steps , operations , elements , components , and / or
groups thereof . The components and features of the draw
ings are not necessarily drawn to scale .
[0023] In a virtualized cloud computing environment ,
multiple virtual machine (VM) servers (also called “ physical
machines ” (PMs) , hosts , or physical servers) are running
VM hypervisor software (such as Xen , KVM , VMware , etc .)
to host multiple VMs . Inside each physical server , the hosted
VMs are sharing the local resources of their host server , such
as Central Processing Unit (CPU) , Graphics Processing Unit
(GPU) , memory , Solid State Drives (SSDs) (flash storage ,
used to cache hot data) , network , etc . PMs are connected to
the backend storage pool .
10024] Virtual machines run the guest Operating System
(O / S) (e . g . , Linux , Windows , etc .) . Virtual machines may be

US 2019 / 0163636 A1 May 30 , 2019

isolated from each other . Cloud service vendors may “ rent ”
these VMs to users . VMs may have different virtualized
hardware and software resource configurations based on a
vendor ' s plans and user demands . VMs may have different
workload characteristics based on user applications (which
are often called “ heterogeneous ” VMs) . To address the
problem of cache management , embodiments of the inven
tive concept focus on Input / Output (I / O) pattern character
istics . But as VMs may share SSD resources , I / O often is the
bottleneck , so an objective is to minimize the cross - VM
impact .
[0025] VM hypervisor software (such as Xen , KVM ,
VMware , etc .) may host multiple virtual machines (VMs) .
The VM hypervisor is responsible for scheduling , resource
management , system software Application Programming
Interfaces (APIs) , and hardware virtualization . The Dynamic
Cache Partition Manager (DCPM) daemon may be installed
at the VM hypervisor level .
[0026] The local cache tier may be any desired format ,
such as a Hard Disk Drive (HDD) , SSD or NVMe SSD array
installed inside each server . SSDs are faster than conven
tional HDDs . VMs may share this cache . In terms of
partitioning a cache tier , the cache tier may be regarded as
a single logical volume : for example , Just a Bunch of Disks
(JBOD) , Just a Bunch of Flash (JBOF) , or Redundant Array
of Independent Disks (RAID) level 0 .
[0027] All VM servers may be connected to a centralized
storage pool to share the backend hard disk drive (HDD) or
other storage resources . The backend storage pool may store
all datasets , while local cache may store hot datasets . That
is , local cache SSDs are performance - oriented , while storage
pool HDDs are capacity - oriented . Different cache / replace
ment algorithms may be adopted to handle the HDD - SSD
content update .
[0028] DCPM Daemons may run on the VM hypervisor of
all physical machines . The DCPM Daemons may track the
workload changes (I / O access pattern changes) of the VM
server , and also records the status of cache , such as space
usage , I / O hit ratio , etc .
[0029] ADCPM controller may be running on a dedicated
server or the embedded system in the storage system . The
DCPM controller may make decisions to partition the SSD
resources for each VM on each PM . The DCPM controller
may use the information collected by DCPM daemons to
make these decisions . The decisions will be sent back to
each DCPM daemon to conduct partitioning and dataset
updates with HDD and SSD . Alternatively , the functionality
attributed to the DCPM controller may be part of the DCPM
Daemon .
[0030] The DCPM should achieve the following design
goals :
[0031] (1) Use the local cache fast storage devices (SSD ,
NVMe SSD , etc .) to cache hot datasets . Unless necessary ,
DCPM should reduce storage pool I / O as much as possible
by detecting and copying hot data to the local cache .
[0032] (2) Better utilize the local cache , adaptively assign
ing space size for each VM according to its workload
change .
[0033] For (1) , DCPM conducts dataset updates between
the local cache and the storage pool in in any desired
temporal granularity (e . g . , 1 minute , 5 minutes , or longer)
and coarse spatial granularity (i . e . , the minimal data unit to
be transferred between local cache and storage pool may be
512 KB , 1 MB , or larger) .

[0034] But (2) presents a number of challenges .
f0035] Two straightforward approaches may be used to
allocate SSD resources among multiple VMs .
[0036] One approach is to proportionally reserve SSD
resources for each VM in the system such that all VMs are
isolated in using their own assigned SSD resources . This
approach will have fixed partition sizes for each VM . The
fixed partition sizes for each VM are based on their weights ,
which in turn may be based on Service Level Agreements
(SLAs) or workload changes (e . g . , based on the reused
dataset amount) . In addition , the partition sizes may change
during runtime . Note that the frequency should be low in
order to reduce the overhead . Different cache replacement
algorithms may be used by each VM to cache their recently
accessed data blocks and the caching management is fully
affected by their own workload changes .
[0037] A second approach manages SSD resources in a
fair competition mode by allowing all VMs to freely use or
share the entire SSDs to absorb spikes . In different epochs ,
VMs may have different sizes according to their workload
changes . If , in one epoch , a particular VM has large I / O
accesses , it may occupy a correspondingly large percentage
of the available cache . A caching algorithm is usually used
to centrally decide which data blocks should be held in SSDs
for all VMs . Consequently , the caching management is
inevitably affected by the intensity of all workload changes .
[0038] However , neither of these approaches may fully
utilize the benefits of SSDs when some of VMs have spike
I / O workloads during runtime . Although the first approach is
able to avoid performance interference , VMs with workload
spikes unfortunately have no chance to obtain more SSD
resources during their spike periods . Each VM keeps the
fixed amount of SSD resources during their runtime . On the
other hand , the second approach solves this issue by allow
ing all VMs to compete for SSD resources based on their
present I / O demands . But cache - unfriendly VMs may
occupy more SSD resources when there are I / O spikes in
their workloads . Thus , their I / O hit ratios are improved and
the overall utilization of SSD resources is increased as well .
But VMs with I / O spikes might occupy a large amount of the
SSD resources during their spike periods by evicting other
cached data , which might pollute critical caching of VMs
with cache friendly workloads and then degrade their I / O hit
ratios .
[0039] In order to ensure all VMs benefit from SSDs , a
new resource management scheme , named DCPM , is pre
sented , which strives to discriminate different workload
types (e . g . , cache - friendly and cache - unfriendly workloads)
by splitting local cache SSDs into two zones , denoted as
“ ZP ” (Performance Guarantee Zone) and “ Zs ” (Spike Buffer
Zone) . The cache is treated as one single logical volume with
DCPM . The “ Performance Guarantee Zone ” may reserve
SSD resources for each VM , and the “ Spike Buffer Zone ”
may absorb and handle I / O spikes .
[0040] But simply fixing these partitions may not be
optimal to general cases . For example , if VMs have a large
number of bins being popular only during a short period ,
then Zs may not be large enough to handle I / O spikes that
access those bins . This scenario may cause a very low I / O hit
ratio and increase the operational costs for caching new bins
in Zs . Thus , it is also important to adjust the size of each VM
inside the Zp , and to adjust the bar between the “ Perfor
mance Guarantee Zone ” and “ Spike Buffer Zone ” . Aiming
to maximize the overall (write and read) I / O hit ratio and to

US 2019 / 0163636 A1 May 30 , 2019

minimize I / O cost (including 1 / 0 access and SSD - HDD
updating costs) , the following equations may define the
operation of DCPM :

Maximize

(1) HHC) - 8 . Ž?ac) i = 1

Subject to :
1 < i < m

Czp + Czs = Cy
m

B _ C4) = { cz , 0 = C4 5 BulCap)
BACE) > ŽCz , (= C4 , 5 Bucu :)
Where :

Co (C ;) = Co Access (i) + Co Update (i)
Co Access (C ;) = TS , · Ns , (i) + TswºNsw (i)
Co Update (C ;) = NH , TH , (1) + NHW ' N „ (i)

Co (C ;) = Co (C ;)
max Co (C ;)
je [1 , m]

the system during runtime , or be estimated by the other
methods in use (i . e . , the percentage of popularities of bins
whose maximal re - visit distances are less than a given cache
size) . Eqs . 6 - 8 show the formulae to estimate I / O time cost
corresponding for each I / O operation . Furthermore , the
normalized I / O cost function is defined in Eq . 9 . Finally ,
administrator - specified per - VM SSD space lower / upper
bound for zones defined in Eqs . 4 - 5 .
[0042] Solving the optimization framework may be diffi
cult and time costly , so a low - cost heuristic approach has
advantages . Specifically , the size of each VM inside the
performance guarantee zone may be adaptively adjusted , as
well as the partition sizes of two zones .
10043) DCPM may attempt to reserve SSD resources in Zp
for each VM in order to ensure that each VM has its own
private cache for its critical hot data . One straightforward
approach is to partition zone Zp among VMs equally or
proportionally , i . e . ,

Czp (i) = CZp : W (10)
[0044] Where wi is a fixed weight based on the Service
Level Agreement (SLA) for VM i and :

; = " w = 1 (11)
[0045] In real implementation , a fixed amount (i . e . , Cz (i))
of the cache in Cz , could be reserved for each VM . However ,
this approach may be ineffective when workloads frequently
change and I / O spikes occur over time . Reserved cache
resources may not be fully utilized when some VMs start to
have a low I / O access rate and other VMs may not be able
to obtain sufficient cache resources when they experience
I / O spikes that need to access a large amount of unique data
blocks (i . e . , large working sets) . Therefore , a partitioning
algorithm to dynamically decide the capacity (i . e . , Cz (i) , or
more specifically , w) for each VM ' s reserved cache in Zp
based on both each VM ' s access history in the long term and
their I / O workload changes may be used .
0046 For example , consider a situation where there are
four VMs , and during the last epoch , they each have the
same sized regions in the Performance Guarantee Zone . As
discussed above , this epoch may be set to a coarse granu
larity such as 5 minutes , or shorter or longer intervals as
desired . Based on the history record of all their accesses
(which may be a global sort of all bins by I / O access times) ,
the VM region sizes in the Performance Guarantee Zone
may be adjusted . On the other hand , DCPM puts top bins
that are accessed only within the current epoch to the Spike
Bufer . A result , the pike Buffer a fter
fair competition and absorb I / O spikes .
[0047] When adjusting the size of the VM regions in the
“ Performance Guarantee Zone ” , the objective is for the
“ Performance Guarantee Zone ” to capture long - term fre
quently - used datasets . The best way to know how much
space each VM needs in the “ Performance Guarantee Zone ”
is to estimate the size based on the last epoch ' s access bins .
For example , if only the most recent epoch were used to
predict VM region sizes , then the procedure would be :
[0048] 1) On each VM server , globally sort all accessed
I / O bins across all VMs on the VM server .
0049] 2) : Pick a threshold number of bins , select that
number of the sorted bins , and save them into the next epoch
“ Performance Guarantee Zone ” .
[0050] This procedure actually does two things : it deter
mines each VM ' s size based on the current epoch access
history , and it determines which bins should be cached . But

TABLE 1
List of symbols .

Symbol Description

Hr (C ;)
Co (C :)
Co (C :)

m
?zp Cze C?

C ;
B2 () , Bu ()
Czp (i) , Czs , (i)
Co Access (1) , COUpdate (1)
Ns , (i) , Ns (i) ,
Nå , (i) , NH , (i)

Ts , Tswa Tz , The

Estimated or predicted hit ratio of i - th VM in the
local cache SSD array .
I / O update overhead (time cost) of i - th VM .
Normalized I / O update overhead (time cost) of i - th
VM .
Knob to adjust the importance ratio between hit ratio
and 1 / 0 overhead .
The total number of VMs on a VM server .
Size of “ Performance Guarantee Zone ” , “ Spike
Buffer Zone ” , and the total local cache SSD array .
C? = Czp + Cza
Assigned cache size of i - th VM .
Pre - defined lower and upper bounds of the input
zone .
Assigned cache size of i - th VM in “ Performance
Guarantee Zone ” and “ Spike Buffer Zone ” .
Time cost of access (either from local SSD or
backend storage pool) and time cost of I / O update
between local SSD and backend HDD .
Number of bins (minimum unit of 1 / 0 update data
set) , SSD read , SSD write , HDD read , and HDD
write of i - th VM .
SSD read , SSD write , HDD read , and HDD write
time cost for one bin (minimum unit of 10
update data set , may be 1 MB , 10 MB , etc .) .
These may be pre - measured .

[0041] The objective is to maximize the hit ratio and
reduce the corresponding normalized I / O costs brought by
the updates between SSD and HDD (Eq . 1) . The I / O hit ratio
function Hr () in Eq . 1 may either be directly monitored from

US 2019 / 0163636 A1 May 30 , 2019

Working Volume (12) Reusability = WorkingSetSize

only considering the most recent epoch may not be strong
enough to predict a VM ' s actual cache needs and may be
misled by I / O spikes during the most recent epoch . There
fore , more than the most recent epoch ' s access history may
be used to refine the prediction . Convolutional weight func
tions may be used to fade out the impact of long - time - ago
access history and assign higher weights to recent epochs . A
sliding window including the last N epochs may be used to
select the region size for each VM during the next epoch . In
fact , the “ most recent epoch ” information method is actually
a good candidate for estimating the size of the partition for
the “ Spike Buffer Zone ” .
[0051] But a static two - zone partition might not be optimal
to general cases . For example , if workloads have a large
number of bins being popular only during a short period ,
then Zs may not be large enough to handle I / O spikes that
access those bins . This may cause a very low I / O hit ratio
and increase the operational costs for caching new bins in
Zs . To solve this problem , a spike - detection - based partition
algorithm that allows DCPM to dynamically adjust the sizes
of Zp and Zs may be used .
[0052] DCPM may include two main components : a spike
detector and a strategy switcher . The spike detector may take
feedback about workload changes and cache performance
(e . g . , I / O hit or I / O miss) as the input to determine if the
current workload is a spike or not . Based on the detected
result , the strategy switcher may make different partitioning
decisions to improve the cache resource utilization .
[0053] Initially , the two zones are each set to half of the
entire cache (although they may also be set to any other
ratios by the system administrator) . Once the spike degree is
calculated , the appropriate strategy may be selected by

10055] Basically , if the reusability is close to one , then it
is almost a one - time - use pass which will pollute datasets in
the local cache . A sliding window that contains multiple
epoch access records may be used to calculate the spike
degree (B1) . The objective is to calculate the percentage of
data accesses in the current epoch that were not used in the
most recent N epochs .
[0056] This sliding window may be the union set of recent
Nepoch access bin addresses . DCPM may track the changes
in the working set sizes between the current and previous
sliding windows (with WS usw and WSpreusw representing
the working sets for the windows in question , and WSSW |
and WSpreyswl representing their respective sizes) . The
relative size difference (which may be computed as the
absolute value of the difference , to always return a positive
value) between these two sliding windows may then be
defined as spike degree (denoted as B) , which may be better
than using an absolute number .
[0057) Table 2 shows an example of the spike detection
procedure , where the sliding window size is N = 3 . As may be
seen , there is no spike in the 4th epoch (i . e . , no new data is
being accessed than may be found in the recently access
history) , but there is a spike in the 5th epoch (i . e . , more data
is being accessed , including data that has not been accessed
recently) : the spike degrees for the 4th and 5th epochs are
0 . 167 and 0 . 533 , respectively . The higher the spike degree
is , the more spikes it has . Additionally , the spike detection
threshold ß may be pre - defined by the administrator . The
lower the threshold ß is , the more sensitive the system is .

TABLE 2
Example of spike detection .

Size of Sliding
Window Epoch # Accessed Bin ID Sliding Window Value Spike Degree

A , B , C
A , B , D , E

E , F , G A , B , C , D , E , F , G

D , E , F , G A , B , D , E , F , G 6 16 – 71 20 . 167 - 71
- 0 . 167

5 H , I , J , K , L , M ,
N , O , P , Q , R

D , E , F , G , H , I , J ,
K , L , M , N , O , P , Q , R 15 1157 2 0 , 533 15

comparing the spike degree with a threshold ß . If the current
spike degree is greater than B , DCPM may use an aggressive
allocation strategy , in which DCPM aggressively enlarges
the capacity of Zs . On the other hand , if the current spike
degree is no greater than f , then DCPM may adjust the
allocation of the cache to these zones in a more conservative
manner . After this is complete , DCPM may then adjust the
region for each VM in Zp .
[0054] As discussed above , a “ spike ” may be defined as :
I / O requests that have (1) relatively larger working set size
(i . e . , accessed address space) in a short period of time , and
(2) relatively low reusability , which is defined as :

[0058] When there are no spikes in the current I / O work
loads — that is , Ba < B - DCPM may tune the partition
between the two zones by leveraging the feedback of each
zone ' s caching performance under the present partition .
Specifically , DCPM may evaluate the importance of the two
zones (i . e . , their contributions to the overall I / O perfor
mance) by recording the total 1 / 0 hit volumes (i . e . , the
amount of all cached data that are hit by one or multiple I / O
requests) in each zone during the recent epoch (e . g . , 5
minutes) . The contribution ratio p may be calculated as the
ratio of the total number of I / O requests in the “ Performance
Guarantee Zone ” and the “ Spike Buffer Zone ” , respectively :
that is ,

US 2019 / 0163636 A1 May 30 , 2019

HVP
HVS

Intuitively , the zone that contributes more to HVs the overall
hit ratio is likely to get more cache resources and the
allocation of the cache is proportional to the contribution
ratio . This strategy is called “ conservative allocation ”
because this hit - ratio - contribution - based strategy is rela
tively stable and is not likely to suddenly increase one zone
size dramatically .
[0059] When I / O spikes are identified by the spike detec
tor , DCPM may aggressively shift cache resources from one
zone to the other . Using the contribution ratio as a feedback
to reset the capacities of two zones unfortunately does not
work well in this case because this approach may not quickly
adapt to workload changes . Further , the delay in shifting
resources after sudden workload changes may trigger a
" cascade effect ” (also called “ thrashing effect ”) of insuffi
cient capacity in one of the zones . For example , when I / O
spikes that access new bins arrive , the I / O hit volume of Zs
in the current epoch might not be large enough to get more
cache resources to handle those I / O spikes . Consequently ,
the I / O hit volume of the “ Spike Buffer Zone ” might become
even less in the next epoch , which triggers further reductions
in future epochs and keeps reducing the capacity of Zs .
[0060] To avoid such a cascade effect , DCPM may attempt
to dynamically and aggressively assign more cache
resources to Z when I / O spikes are found in VM workloads ,
but still minimize the penalty on the caching performance of
Zp . The general idea is that if the working set size of
accessed bins in the current epoch increases dramatically
compared with the previous epoch , then it would also be
helpful to increase the size of Zs to absorb the spikes in the
near future . But how much cache resources should be added
to Zs ?
[0061] We only need to aggressively increase Zs to cache
reusable short - term hot bins , not all spike bins . To achieve
this goal , another sliding window to record I / O popularity
statistics for all bins that are accessed in recent several
epochs (instead of the latest one) may be used . This sliding
window may be of any size : for example , the most recent 10
epochs .
[0062] Having introduced the concept of “ reusable short
term hot bins ” , this term needs to be defined . A fixed I / O
access number (e . g . , bins accessed 1000 times or more in the
last epoch) could be used . But since VM workload I / O
access is not limited to a certain range using a fixed absolute
number as a standard to qualify short - term reusable hot bins
might not scale up to larger clusters . Therefore , the average
access number of data bins in the sliding window that are
also found in the “ Performance Guarantee Zone ” may be
used as the criterion to set the threshold for choosing
short - term reusable hot bins to be cached in Zs . DCPM may
then find all the data bins that have been accessed in the
current sliding window more than some threshold number of
times but are not currently cached in Zp . Such bins are
defined to be the “ reusable short - term hot bins ” . DCPM may
then set the anticipated capacity of Z to the total size of such

110 - 1 , 110 - 2 , and 110 - 3 . While FIG . 1 shows three virtual
machine servers , embodiments of the inventive concept may
support any number of virtual machine servers .
[0064] Each of virtual machine servers 110 - 1 , 110 - 2 , and
110 - 3 may include processors 115 - 1 , 115 - 2 , and 115 - 3 ,
respectively , and memories 120 - 1 , 120 - 2 , and 120 - 3 , respec

ti n g there , proces115111 - , and
115 - 3 may execute applications , such as applications being
used by virtual machines running on virtual machine servers
110 - 1 , 110 - 2 , and 110 - 3 , and which may be stored in
memories 120 - 1 , 120 - 2 , and 120 - 3 . Processors 115 - 1 , 115 - 2 ,
and 115 - 3 may be any varieties of processor : for example , an
Intel Xeon , Celeron , Itanium , or Atom processor , an AMD
Opteron processor , an ARM processor , etc . While FIG . 1
shows a single processor in each of virtual machine servers
110 - 1 , 110 - 2 , and 110 - 3 , virtual machine servers 110 - 1 ,
110 - 2 , and 110 - 3 may each include any number of proces
sors , each of which may be single core or multi - core
processors , and may be mixed in any desired combination .
Memories 120 - 1 , 120 - 2 , and 120 - 3 may each be any variety
of memory , such as flash memory , Dynamic Random Access
Memory (DRAM) , Static Random Access Memory
(SRAM) , Persistent Random Access Memory , Ferroelectric
Random Access Memory (FRAM) , or Non - Volatile Random
Access Memory (NVRAM) , such as Magnetoresistive Ran
dom Access Memory (MRAM) etc . Memories 120 - 1 , 120 - 2 ,
and 120 - 3 may each also be any desired combination of
different memory types . Memories 120 - 1 , 120 - 2 , and 120 - 3
may be controlled by a memory controller (not shown in
FIG . 1) , also part of virtual machine servers 110 - 1 , 110 - 2 ,
and 110 - 3 .
[0065] Virtual machine servers 110 - 1 , 110 - 2 , and 110 - 3
may each also include local storage devices . For example ,
virtual machine servers 110 - 1 , 110 - 2 , and 110 - 3 may include
caches 125 - 1 , 125 - 2 , and 125 - 3 , respectively . Local storage
devices such as caches 125 - 1 , 125 - 2 , and 125 - 3 may take
any desired form , such as Hard Disk Drives (HDDs) or Solid
State Drives (SSDs) , and may use any desired connector ,
such as Peripheral Component Interconnect (PCI) , PCI
Express (PCIe) , Serial AT Attachment (SATA) , Non - Volatile
Memory Express (NVMe) , NVMe over Fabric (NVMeoF) ,
M . 2 , or any other desired connection . Embodiments of the
inventive concept may be combined with embodiments of
the inventive concept disclosed in U . S . patent application
Ser . No . , filed , which claims the priority
from U . S . Patent Application Ser . No . 62 / 534 , 647 , filed Jul .
19 , 2017 , both of which are incorporated by reference herein
for all purposes .
[0066] System 105 may also include data center server
130 . Like virtual machine servers 110 - 1 , 110 - 2 , and 110 - 3 ,
data center server 130 may include processor 115 - 4 and
memory 120 - 4 . But data center server 130 may also include
storage pool 135 , receiver 140 , and transmitter 145 . Storage
pool 135 may be a pool of storage devices organized into
storage tiers . In some embodiments of the inventive concept ,
storage pool 135 may include only SSD or other flash
memory devices ; in other embodiments of the inventive
concept , storage pool 135 may include storage devices using
other storage formats . Receiver 140 may receive Input /
Output (I / O) commands and other data from virtual machine
servers 110 - 1 , 110 - 2 , and 110 - 3 , and transmitter 145 may
transmit data to virtual machine servers 110 - 1 , 110 - 2 , and
110 - 3 .

bins .
[0063] FIG . 1 shows networked machines that may host
virtual machines and use a storage pool , according to an
embodiment of the inventive concept . In FIG . 1 , system 105
is shown . System 105 may include virtual machine servers

US 2019 / 0163636 A1 May 30 , 2019

[0067] Virtual machine servers 110 - 1 , 110 - 2 , and 110 - 3 ,
and data center server 130 , are shown connected via network
150 . Using network 150 , virtual machine servers 110 - 1 ,
110 - 2 , and 110 - 3 may send I / O commands to data center
server 130 , and may receive responses therefrom . Virtual
machine servers 110 - 1 , 110 - 2 , and 110 - 3 and data center
server 130 may all be part of a Local Area Network (LAN) ,
or may include other network types , such as a Wide Area
Network (WAN) , or a global network such as the Internet .
Network 150 may also be a combination of multiple such
networks , in any desired combination .
[0068] Although FIG . 1 depicts virtual machine servers
110 - 1 , 110 - 2 , and 110 - 3 and data center server 130 as servers
(and could each be either standalone or rack servers) ,
embodiments of the inventive concept may include virtual
machine servers 110 - 1 , 110 - 2 , and 110 - 3 and data center
server 130 each of any desired type without limitation . For
example , the servers shown in FIG . 1 could each be replaced
with desktop or laptop computers or any other device that
may benefit from embodiments of the inventive concept .
Virtual machine servers 110 - 1 , 110 - 2 , and 110 - 3 and data
center server 130 may each also include specialized portable
computing devices , tablet computers , smartphones , and
other computing devices . For purposes of description , Vir
tual machine servers 110 - 1 , 110 - 2 , and 110 - 3 are described
as hosting virtual machines , but embodiments of the inven
tive concept may include machines that are not virtual
machines running on virtual machine servers 110 - 1 , 110 - 2 ,
and 110 - 3 . For example , virtual machine servers 110 - 1 ,
110 - 2 , and 110 - 3 could include a computer that includes
multiple applications running in parallel that may compete
for the resources of caches 125 - 1 , 125 - 2 , and 125 - 3 .
100691 FIG . 2 shows additional details of servers 110 - 1 ,
110 - 2 , 110 - 3 , and 130 of FIG . 1 . In FIG . 2 , typically , server
110 (which may represent either of servers 110 - 1 , 105 - 2 , or
110 - 3 of FIG . 1) includes one or more processors 115 , which
may include memory controllers 205 and clocks 210 , which
may be used to coordinate the operations of the components
of server 110 . Processors 115 may also be coupled to
memories 120 , which may include random access memory
(RAM) , read - only memory (ROM) , or other state preserving
media , as examples . Processors 110 may also be coupled to
storage devices 125 , and to network connector 215 , which
may be , for example , an Ethernet connector or a wireless
connector . Processors 115 may also be connected to buses
220 , to which may be attached user interfaces 225 and
Input / Output interface ports that may be managed using
Input / Output engines 230 , among other components .
[0070] FIG . 3 shows added detail of one server of FIG . 1
interacting with the storage pool of FIG . 1 , according to an
embodiment of the inventive concept . In FIG . 3 , virtual
machine server 110 is shown as hosting three virtual
machines 305 - 1 , 305 - 2 , and 305 - 3 , but embodiments of the
inventive concept may include any number of virtual
machines being hosted by virtual machine server 110 . While
only virtual machine 305 - 3 described in greater detail below ,
embodiments of the inventive concept include other virtual
machines , such as virtual machines 305 - 1 and 305 - 2 , oper
ating similarly . Virtual machine 305 - 3 is shown as including
application 310 running on operating system 315 . Hypervi
sor 320 may manage the operations virtual machines 305 - 1 ,
305 - 2 , and 305 - 3 running on virtual machine server 110 .

Hypervisor 320 may also interact with storage pool 135 to
send Input / Output (1 / 0) requests from virtual machines
305 - 1 , 305 - 2 , and 305 - 3 .
[0071] Virtual machine server 110 may also include cache
125 . Cache 125 may include local storage for datasets
accessed by virtual machines 305 - 1 , 305 - 2 , and 305 - 3 .
Dynamic Cache Partition Manager (DCPM) Daemon 325 ,
which may be implemented within hypervisor 320 , may
manage the partitioning of cache 125 for use by virtual
machines 305 - 1 , 305 - 2 , and 305 - 3 , as described below .
[0072] As described above , FIG . 3 shows virtual machine
server 110 with its own local cache 125 , which mirrors FIG .
1 showing virtual machine servers 110 - 1 110 - 2 , and 110 - 3
each with their own caches 125 - 1 , 125 - 2 , and 125 - 3 , respec
tively . But embodiments of the inventive concept do not
limit the location of cache 125 to within virtual machine
server 110 . For example , data center server 130 may include
its own cache 330 , which may be shared among virtual
machines 305 - 1 through 305 - 3 on virtual machine server
110 , or shared among virtual machines across multiple
virtual machine servers 110 - 1 , 110 - 2 , and 110 - 3 of FIG . 1 .
Alternatively , cache 125 might be part of another machine
somewhere between data center server 130 and virtual
machine servers 110 - 1 , 110 - 2 , and 110 - 3 of FIG . 1 , provid
ing caching services to some of those servers but not all of
them . While these setups might seem unusual , if , for
example , cache 125 includes SSDs and storage pool 135
includes hard disk drives , cache 125 may be a shared
resource across virtual machine servers 110 - 1 , 110 - 2 , and
110 - 3 of FIG . 1 and still useful . In such embodiments of the
inventive concept , the functions performed by the DCPM
may be split between DCPM Daemon 325 and DCPM
Controller 335 . DCPM Daemon 325 may measure the
workloads of the individual virtual machines located on
virtual machine server 110 , and DCPM Controller 335 may
manage the partitioning of cache 330 , as described below .
Alternatively , either DCPM Daemon 325 or DCPM Con
troller 335 may perform all of the functionality describe
below . The term DCPM is intended to represent the overall
operations of DCPM Daemon 325 and DCPM Controller
335 , whether a system includes only one or both of these
components .
[0073] Even in embodiments of the inventive concept
where virtual machine server 110 includes local cache 125 ,
the functions of the DCPM may be split between DCPM
Daemon 325 and DCPM Controller 335 in a similar manner .
For example , each virtual machine server 110 - 1 , 110 - 2 , and
110 - 3 of FIG . 1 may include its own local cache 125 and its
own DCPM Daemon 325 to measure virtual machine work
loads , and DCPM Controller 335 , shown in FIG . 3 as
resident in data center server 130 , may manage the parti
tioning of each local cache . Embodiments of the inventive
concept may also separate caches 125 and / or 130 from either
or both of DCPM Daemon 325 and DCPM Controller 335 :
that is , caches 125 and / or 130 might be on separate machines
from DCPM Daemon 325 and DCPM Controller 335 .
[0074] As mentioned above , the DCPM functionality may
be divided between DCPM Daemon 325 and DCPM Con
troller 335 , depending on the embodiment of the inventive
concept . In the remainder of this document , DCPM Daemon
325 is described as performing all of the functionality of the
DCPM for simplicity of description .
[0075] The above description uses the term " cache ” to
describe the operation of the intermediary storage (between

nents .

US 2019 / 0163636 A1 May 30 , 2019

virtual machines 305 - 1 through 305 - 3 and data center server
130) . Traditionally , the term " cache " is used to describe a
storage system that is faster than the more permanent / larger
storage location for the data , but that is also smaller in size .
Accordingly , when new data is accessed that is not currently
resident in the cache , the cache might evict some data
currently stored in the cache in favor of storing the newly
requested data . (If the evicted data is then accessed again ,
the evicted data would generate a cache miss , forcing data
retrieval from the more permanent / larger storage and pos
sibly evicting some additional data from the cache) . Caches
may use any desired algorithm to select what data to evict ,
such as Least Recently Used (LRU) and Least Frequently
Used (LFU) to name two common cache eviction strategies .
[0076] While caches 125 and / or 330 may operate in this
manner , evicting data as needed when new data is accessed ,
in other embodiments of the inventive concept caches 125
and / or 330 may operate differently . For example , in some
embodiments of the inventive concept , caches 125 and / or
330 might only update their stored data at the start of a new
epoch (epochs are discussed more below with reference to
FIG . 9) . That is , when a new epoch begins , caches 125
and / or 330 may evict some data and add some new data ,
based on the recent data access patterns of virtual machines
305 - 1 through 305 - 3 . If new data , not currently in caches
125 and / or 330 , is requested , that new data is accessed from
storage pool 135 but is not stored in caches 125 and / or 330
(unless the DCPM decides to include that data in caches 125
and / or 330 at the start of the next epoch) . Such a cache might
be called a “ lazy cache ” or “ coarse granularity cache ” .
[0077] FIG . 4 shows details of cache 125 of FIG . 1 . In
FIG . 4 , cache 125 is shown as including for Solid State
Drives (SSDs) 405 - 1 , 405 - 2 , 405 - 3 , and 405 - 4 . But embodi
ments of the inventive concept may include cache 125
including any number of storage devices , which may be of
any desired format (SSD , Hard Disk Drive (HDD) , etc .) .
Generally , embodiments of the inventive concept may treat
cache 125 as though it were a single storage unit , regardless
of its makeup . Thus , for example , storage devices 405 - 1 ,
405 - 2 405 - 3 and 405 - 4 may be implemented as Just a Bunch
of Disks (JBOD) , Just a Bunch of Flash (JBOF) , Redundant
Array of Independent Disks (RAID) level 0 , or any other
desired configuration that may be treated as a single storage
unit .
0078] FIGS . 5A - 5C show various partitions of cache 125
of FIG . 1 into performance guarantee zones and spike buffer
zones . In FIG . 5A , cache 125 may be initially partitioned
into equally - sized performance guarantee zone 505 and
spike buffer zone 510 . Then , after a few epochs with no
workload spikes , spike buffer zone 510 might be reduced in
size and performance guarantee zone 505 might be
increased , as shown in FIG . 5B . At a few more epochs where
there have been workload spikes , spike buffer zone 510
might be increased and performance guarantee zone 505
might be reduced , as shown in FIG . 5C . This shows how
DCPM may adjust the amount of storage in cache 125
allocated to performance guarantee zone 505 and spike
buffer zone 510 as the workload demands of the various
virtual machines change .
[0079] FIG . 6 shows a high - level operational flow of
Dynamic Cache Partition Manager (DCPM) Daemon 325 of
FIG . 3 . DCPM Daemon 325 may have workload spike
detector 605 determine whether there have been workload
spikes in the virtual machines in server 110 of FIG . 3 . In

addition , DCPM Daemon 325 may receive feedback from
cache feedback tracker 610 , indicating how well cache 125
of FIG . 1 performed using a partition from a previous epoch .
DCPM Daemon 325 may then use this information to select
a strategy to repartition cache 125 of FIG . 1 using strategy
switcher 615 , and the content update controller 620 may
update how cache 125 of FIG . 1 is partitioned based on
strategy switcher 615 .
[0080] FIG . 7 shows how cache 125 of FIG . 1 may be
partitioned when there are no workload spikes , according to
an embodiment of the inventive concept . When there are no
workload spikes , spike buffer zone 510 does not need to be
as large , since there are no I / O spikes to worry about . In that
situation , performance guarantee zone 505 may be larger to
handle more regular data accesses .
[0081] To adjust the partition of cache 125 for the next
epoch , DCPM Daemon 325 of FIG . 3 may identify all the
data addresses accessed in I / O requests by virtual machines
305 - 1 , 305 - 2 , and 305 - 3 in FIG . 3 in the current epoch .
These data addresses may then be organized into three
groups : data hits 705 in performance guarantee zone 505 ,
data hits 710 in spike buffer zone 510 , and data misses 715 .
Performance guarantee zone 505 and spike buffer zone 510
may then be repartitioned in proportion to the number of
data hits 705 and 710 in each zone . So , for example , assume
that of all I / O requests issued by virtual machines 305 - 1 ,
305 - 2 , and 305 - 3 during the current epoch , 60 % of the I / O
requests resulted in data hits in performance guarantee zone
505 , 30 % of all the I / O requests resulted in data hits in spike
buffer zone 510 , and 10 % of the I / O requests resulted in data
misses : that is , the data was not found in cache 125 of FIG .
1 . This fact pattern shows that 2 / 3 of all the I / O requests that
resulted in data hits were for data found in performance
guarantee zone 505 , and 1 / 3 of all the I / O requests that
resulted in data hits were for data found in spike buffer zone
510 . In that situation , performance guarantee zone 505 and
spike buffer zone 510 may be repartitioned so that perfor
mance guarantee zone 505 is allocated 2 / 3 of the storage in
cache 125 of FIG . 1 , and spike buffer zone 510 is allocated
1 / 3 of the storage in cache 125 of FIG . 1 . Note that data
misses 715 do not factor into this calculation , since they did
not result in cache hits .
[0082] As described above , this analysis may be per
formed using more data than just the most recent epoch . For
example , memory 120 of FIG . 1 may store historical infor
mation about data hits and misses in cache 125 of FIG . 1 ,
and this historical information may be factored into the
analysis . Thus , for example , data hits 705 and 710 may
factor in data hits in both the current epoch and in older
epochs . For example , a sliding window of the last , say , 10
epochs may be stored as the historical information , and this
sliding window of historical data may be used in determin
ing how to partition cache 125 of FIG . 1 . To prevent older
performance data that might be aberrant (relative to newer
performance data) , older data may be given lower weights
than newer epochs : for example , using a convolution func
tion . Any desired weighting function may be used to manage
the impact of older performance data .
100831 . FIG . 8 shows how cache 125 of FIG . 1 may be
partitioned when there are workload spikes , according to an
embodiment of the inventive concept . Similarly to FIG . 7 , in
FIG . 8 , the data hits in cache 125 of FIG . 1 may be divided
into those data hits 805 that were satisfied by performance
guarantee zone 505 and those data hits 810 that were

US 2019 / 0163636 A1 May 30 , 2019

satisfied somewhere else (i . e . , spike buffer zone 510) . But
instead of partitioning performance guarantee zone 505 and
spike buffer zone 510 in proportion to the number of data
hits in each zone , instead another calculation may be used .
[0084] From data hits 805 in performance guarantee zone
505 , an access statistic may be used . Any access statistic
may be used : an embodiment of the inventive concept may
use an average access count . The average access count may
be calculated as the total number of data accesses for data in
performance guarantee zone 505 , divided by the number of
data addresses being accessed . This average access count
may be used to divide data hits 810 in spike buffer zone 510
into qualified short - term hot bins 815 and other hits 820 .
Spike buffer zone 510 may then be allocated enough of
cache 125 of FIG . 1 to include all the data in qualified
short - term hot bins 815 , with the remaining storage of cache
125 of FIG . 1 being allocated to performance guarantee zone
505
[0085] As noted above , FIGS . 7 - 8 reflect different strate
gies for allocating between performance guarantee zone 505
and spike buffer zone 510 . The question then becomes , when
to use each allocation strategy . DCPM Daemon 325 of FIG .
3 may calculate a reusability statistic , which may represent
how much data in cache 125 of FIG . 1 represents workload
spikes and how much data in cache 125 of FIG . 1 represents
long - term data . This reusability statistic may then be com
pared with a spike threshold value , which may be set by the
system administrator to any desired threshold . If the reus
ability statistic exceeds (or is at least as large as) the spike
threshold , then the aggressive allocation strategy shown in
FIG . 8 may be used ; otherwise , the conservative allocation
strategy shown in FIG . 7 may be used .
[0086] The reusability statistic , then , becomes the impor
tant variable . The reusability statistic may be computed by
calculating the difference between the size of the dataset in
the current epoch and the size of the dataset in the previous
epoch . This difference may then be divided by the size of the
current dataset to produce a value that reflects how much
larger the current dataset is to the previous dataset . This
increase , which may be called the reusability statistic , rep
resents how much of the data in cache 125 of FIG . 1 , was the
result of workload I / O spikes , and therefore reflects how
much of the workload is being managed by spike buffer zone
510 of FIGS . 5A - 5C as compared with performance guar
antee zone 505 of FIGS . 5A - 5C . When compared with the
spike threshold , the reusability statistic may indicate
whether aggressive or conservative allocation should be
used .
[0087] In FIGS . 7 - 8 , DCPM Daemon 325 of FIG . 3 may
manage the allocation of cache 125 of FIG . 1 to performance
guarantee zone 505 and spike buffer zone 510 . But this
allocation does not end the analysis . Performance guarantee
zone 505 is intended to reserve a portion of cache 125 of
FIG . 1 to each virtual machine 305 - 1 , 305 - 2 , and 305 - 3 of
FIG . 3 . But like the allocation between performance guar
antee zone 505 and spike buffer zone 510 , the amount of
performance guarantee zone 505 reserved for each virtual
machine 305 - 1 , 305 - 2 and 305 - 3 of FIG . 3 might need to
change over time to better reflect the changing needs of each
virtual machine . FIG . 9 represents how an embodiment of
the inventive concept may adjust the allocation of perfor
mance guarantee zone 505 to each virtual machine .
[0088] In FIG . 9 , a history of N epochs 905 - 1 , 905 - 2 ,
905 - 3 , and 905 - 4 , with epoch 905 - 4 being the most recent

(i . e . , current) epoch . Within each epoch , allocations (called
" regions ”) 910 - 1 , 910 - 2 , 910 - 3 , and 910 - 4 are shown , each
region representing a portion of performance guarantee zone
505 of FIGS . 5A - 5C for four virtual machines . As may be
seen , over time regions 910 - 1 through 910 - 4 have changed
in allocation . Initially , during epoch 910 - 1 , all four regions
910 - 1 through 910 - 4 are allocated equal percentages of
performance guarantee zone 505 of FIGS . 5A - 5C . Later ,
during epoch 905 - 2 , region 910 - 1 is allocated a larger
percentage of performance guarantee zone 505 of FIGS .
5A - 5C , and region 910 - 4 is allocated a smaller percentage .
Still later , during epoch 905 - 4 , region 910 - 1 is allocated a
small percentage of performance guarantee zone 505 of
FIGS . 5A - 5C , and region 910 - 4 is allocated the largest
percentage .
00891 . To determine the allocation for regions 910 - 1
through 910 - 4 may use a selection statistic . This selection
statistic may be used relative to the data in regions 910 - 1
through 910 - 4 to select various datasets for each virtual
machine . The selected datasets may then be compared in
size , and regions 910 - 1 through 910 - 4 may then be allocated
in proportion to the sizes of the datasets for each virtual
machine for new epoch 915 . Data in regions 910 - 1 through
910 - 4 may be compared with the selection statistic for just
current epoch 905 - 4 , or for all epochs 905 - 1 through 905 - 4 .
As discussed above with reference to FIG . 7 , memory 120
of FIG . 1 may store historical information about past epochs
205 - 1through 205 - 3that may be used by CPMDamn
325 of FIG . 3 . This historical information may include any
desired data : for example , all past epochs , or a subset such
as a sliding window containing the past , say , 5 or 10 epochs .
In embodiments of the inventive concept where more than
just current epoch 905 - 4 is considered , the contributions of
past epochs may be equal , or they may be weighted using
any desired weighting function . For example , a convolution
function may be used to lessen the impact of older epochs in
favor of newer epochs (which might better represent the
current demands of virtual machines 305 - 1 , 305 - 2 , and
305 - 3 of FIG . 3) .
[0090] In one embodiment of the inventive concept , the
selection statistic may include set number of bins . For
example , all the datasets stored performance guarantee zone
505 of FIGS . 5A - 5C may be sorted : for example , in terms of
their access counts . The value of the selection statistic - say ,
1000 bins — may then be used to identify the bins to be
considered within this sorted list : the bins with the highest
1000 access counts may be selected , and any other bins may
be discarded . These selected datasets may then be divided
according to the virtual machines accessing the data (that is ,
regions 910 - 1 through 910 - 4 in which the datasets were
stored) . The relative number of bins for each machine may
then be used to determine relative size percentages for
regions 910 - 1 through 910 - 4 for new epoch 915 .
[0091] As a concrete example , consider a situation in
which only current epoch 905 - 4 is considered . (Using only
current epoch 905 - 4 could result in a poor allocation of
cache resources due to I / O spikes , but this problem may be
ignored for the purposes of a simple example .) Assume that ,
after sorting and applying the selection statistic , it turns out
that two of the selected datasets were in region 910 - 1 , three
of the selected datasets were in region 910 - 2 , one of the
selected datasets was in region 910 - 3 , and four of the
selected datasets were in region 910 - 4 . Then , for new epoch
915 , performance guarantee zone 505 of FIGS . 5A - 5C may

US 2019 / 0163636 A1 May 30 , 2019

be allocated to give region 910 - 1 20 % of the resources ,
region 910 - 2 30 % of the resources , region 910 - 3 10 % of the
resources , and region 910 - 4 40 % of the resources .
[0092] FIG . 10 shows details of DCPM Daemon 325 of
FIG . 3 . In FIG . 10 , DCPM Daemon 325 is shown as
including reusability statistic calculator 1005 , comparator
1010 , access statistic calculator 1015 , spike data identifier
1020 , cache partitioner 1025 , percentage calculator 1030 ,
selection statistic 1035 , and identifier 1040 . Reusability
statistic calculator 1005 may be used to calculate the reus
ability statistic used to determine whether there are work
load I / O spikes . Comparator 1010 may be used to compare
the reusability statistic with spike threshold 1045 , which
may represent a preset cutoff for whether workload I / O
spikes justify an aggressive allocation strategy or a conser
vative allocation strategy . (Comparator 1010 may also be
used for other comparisons : for example , comparing indi
vidual datasets in spike buffer zone 510 of FIGS . 5A - 5C
with the access statistic .) Access statistic calculator 1015
may calculate an access statistic , such as the average access
count for data in performance guarantee zone 505 of FIGS .
5A - 5C . Spike data identifier 1020 may be used to identify
data in spike buffer zone 510 of FIGS . 5A - 5C that satisfies
the access statistic (for example , for use in the aggressive
allocation strategy) . Cache partitioner 1025 may be used to
partition cache 125 of FIG . 1 into performance guarantee
zone 505 of FIGS . 5A - 5C and spike buffer zone 510 of
FIGS . 5A - 5C . Cache partitioner 1025 may also be used to
divide performance guarantee zone 505 of FIGS . 5A - 5C into
regions 910 - 1 through 910 - 4 of FIG . 9 . Percentage calcu
lator 1030 may be used to calculate the percentages of data
hits in performance guarantee zone 505 of FIGS . 5A - 5C and
spike buffer zone 510 of FIGS . 5A - 5C (for example , for use
in the conservative allocation strategy) . Selection statistic
1035 may be a statistic , preset for example by the system
administrator , used in selecting datasets when allocating the
sizes of regions 910 - 1 through 910 - 4 of FIG . 9 . And iden
tifier 1040 may identify the percentage of datasets that
satisfy selection statistic 1035 for each virtual machine ,
again for use in allocating the sizes of regions 910 - 1 through
910 - 4 of FIG . 9 .
10093] FIGS . 11A - 11B show a flowchart of an example
procedure for DCPM Daemon 325 of FIG . 3 to partition
cache 125 of FIG . 1 , according to an embodiment of the
inventive concept . In FIG . 11A , at block 1105 , cache parti
tioner 1025 of FIG . 10 may initially partition cache 125 of
FIG . 1 into performance guarantee zone 505 of FIGS .
5A - 5C and spike buffer zone 510 of FIGS . 5A - 5C . This
initial partition may allocate performance guarantee zone
505 of FIGS . 5A - 5C and spike buffer zone 510 of FIGS .
5A - 5C equally . At block 1110 , cache partitioner 1025 of
FIG . 10 may initially partition performance guarantee zone
505 of FIGS . 5A - 5C into regions 910 - 1 through 910 - 4 , one
for each virtual machine . Again , this initial partition allocate
equal regions 910 - 1 through 910 - 4 .
[0094] When a new epoch begins , at block 1115 , reusabil
ity statistic calculator 1005 of FIG . 10 may calculate the
reusability statistic for the current epoch (and possibly
previous epochs) . At block 1120 (FIG . 11B) , DCPM Dae
mon 325 of FIG . 3 may compare the reusability statistic with
spike threshold 1045 of FIG . 10 . If the reusability statistic is
at least as large as spike threshold 1045 of FIG . 10 , then at
block 1125 DCPM Daemon 325 of FIG . 3 may use an
aggressive allocation strategy . Otherwise , at block 1130 ,

DCPM Daemon 325 of FIG . 3 may use a conservative
allocation strategy . Either way , once cache 125 of FIG . 1 has
been partitioned into performance guarantee zone 505 of
FIGS . 5A - 5C and spike buffer zone 510 of FIGS . 5A - 5C , at
block 1135 DCPM Daemon 325 of FIG . 3 may partition
performance guarantee zone 505 of FIGS . 5A - 5C into
regions 910 - 1 through 910 - 4 of FIG . 9 . Processing may then
return to block 1115 for repartitioning when the next epoch
arrives .
100951 . FIG . 12 shows a flowchart of an example proce
dure for DCPM Daemon 325 of FIG . 3 to partition cache 125
of FIG . 1 using an aggressive allocation strategy , according
to an embodiment of the inventive concept . In FIG . 12 , at
block 1205 , access statistic calculator 1015 of FIG . 10 may
calculate an access statistic , such as the average access count
or the average access time , for data in performance guaran
tee zone 505 of FIGS . 5A - 5C . At block 1210 , spike data
identifier 1020 of FIG . 10 may identify data in spike buffer
zone 510 of FIGS . 5A - 5C that satisfies the access statistic .
At block 1215 , cache partitioner 1025 of FIG . 10 may
partition cache 125 of FIG . 1 into performance guarantee
zone 505 of FIGS . 5A - 5C and spike buffer zone 510 of
FIGS . 5A - 5C for next epoch 915 of FIG . 9 so that spike
buffer zone 510 of FIGS . 5A - 5C has enough storage to store
the identified data .
[0096] The reason why block 1210 filters data in spike
buffer zone 510 of FIGS . 5A - 5C is that there might be data
that is used only one time , and does not really need to be in
caches 125 and / or 330 of FIG . 3 even if there was a data
spike . For example , a video segment accessed over a net
work is likely watched once , then no longer needed . Such a
datum does not need to be stored in caches 125 and / or 330
of FIG . 3 , and may safely be filtered out when determining
the appropriate size of spike buffer zone 510 of FIGS .
5A - 5C for next epoch 915 of FIG . 9 .
100971 Information about access statistics may be stored in
RAM , rather than in caches 125 and / or 330 of FIG . 3 . For
example , RAM may be used to store metadata about caches
1235 and / or 330 of FIG . 3 . An access count that is 32 bits
wide may track billions of accesses of a particular address ,
or may store quite accurately an access time measured in
small fractions of a second . Thus , the amount of metadata
that may be stored is quite small relative to the data itself .
By storing metadata in RAM (or some other storage that is
faster still than caches 125 and / or 330 of FIG . 3) , generating
the access statistic as described in block 1205 of FIG . 12
may be done very efficiently .
[0098] In FIG . 12 , blocks 1205 and 1210 may be per
formed using data from just previous epoch 905 - 4 of FIG . 9 .
But blocks 1205 and 1210 may also be performed using data
from the sliding window of any desired number of previous
epochs 905 - 1 through 905 - 4 of FIG . 9 . By using additional
epochs , the number of data in spike buffer zone 510 of FIGS .
5A - 5C that satisfy the access statistic is almost certainly
larger than the number of data in spike buffer zone 510 of
FIGS . 5A - 5C of previous epoch 905 - 4 of FIG . 9 , which may
increase the size of spike buffer zone 510 of FIGS . 5A - 5C
relative to previous epoch 905 - 4 of FIG . 9 . Since FIG . 12 is
used when workload spikes have been detected , increasing
the size of spike buffer zone 510 of FIGS . 5A - 5C is typically
desirable , although spike buffer zone 510 of FIGS . 5A - 50
should not grow so large as to affect performance guarantee
zone 505 of FIGS . 5A - 5C (for example , by making perfor

US 2019 / 0163636 A1 May 30 , 2019

mance guarantee zone 505 of FIGS . 5A - 5C too small to
support the normal workloads of virtual machines 305 - 1
through 305 - 3 of FIG . 3) .
[0099] In block 1205 , if a sliding window of epochs is
used to determine the access statistic , in some embodiments
of the inventive concept the access statistic may be calcu
lated for data that was stored in performance guarantee zone
505 of FIGS . 5A - 5C in any of the previous epochs (whether
or not that data was found in performance guarantee zone
505 of FIGS . 5A - 5C in previous epoch 905 - 4 of FIG . 9) . In
other embodiments of the inventive concept , the access
statistic may be calculated only for data found in perfor
mance guarantee zone 505 of FIGS . 5A - 5C in previous
epoch 905 - 4 of FIG . 9 . That is , if a particular datum was not
found in performance guarantee zone 505 of FIGS . 5A - 5C
in previous epoch 905 - 4 of FIG . 9 , then that datum ' s
metadata is not used in calculating the access statistic .
[0100] Blocks 1205 and 1210 may also use windows of
different widths in some embodiments of the inventive
concept . For example , a large sliding window (say , 10
epochs) might be used in block 1205 to determine the access
statistic , but a small sliding window (say , one or two epochs)
might be used in block 1210 to determine which data satisfy
the access statistic .
[0101] FIG . 13 shows a flowchart of an example proce
dure for DCPM Daemon 325 of FIG . 3 to partition cache 125
of FIG . 1 using a conservative allocation strategy , according
to an embodiment of the inventive concept . In FIG . 13 , at
block 1305 , percentage calculator 1030 of FIG . 10 may
calculate percentage 705 of FIG . 7 of hits in cache 125 of
FIG . 1 that were in performance guarantee zone 505 of
FIGS . 5A - 5C . At block 1310 , percentage calculator 1030 of
FIG . 10 may calculate percentage 710 of FIG . 7 of hits in
cache 125 of FIG . 1 that were in spike buffer zone 510 of
FIGS . 5A - 5C . At block 1315 , cache partitioner 1025 of FIG .
10 may partition cache 125 of FIG . 1 into performance
guarantee zone 505 of FIGS . 5A - 5C and spike buffer zone
510 of FIGS . 5A - 5C for next epoch 915 of FIG . 9 in
proportion to percentages 705 and 710 of FIG . 7 of hits in
performance guarantee zone 505 of FIGS . 5A - 5C and spike
buffer zone 510 of FIGS . 5A - 5C .
[0102] FIG . 14 shows a flowchart of an example proce
dure for DCPM Daemon 325 of FIG . 3 to calculate a
reusability statistic , according to an embodiment of the
inventive concept . In FIG . 14 , at block 1405 , reusability
statistic calculator 1005 of FIG . 10 may calculate the dif
ference between the number of bins in the cache in current
epoch 905 - 4 and past epochs 905 - 1 , 905 - 2 , and / or 905 - 3 . At
block 1410 , reusability statistic calculator 1005 of FIG . 10
may divide that difference by the number of bins in cache
125 of FIG . 1 in current epoch 905 - 4 .
[0103] FIG . 15 shows a flowchart of an example proce
dure for DCPM Daemon 325 of FIG . 3 to divide perfor
mance guarantee zone 505 of FIGS . 5A - 5C into regions
910 - 1 through 910 - 4 of FIG . 9 for the virtual machines ,
according to an embodiment of the inventive concept . In
FIG . 15 , at block 1505 , selection statistic 1035 of FIG . 10
may be determined . As discussed above , selection statistic
1035 of FIG . 10 may be preset by the system administrator .
At block 1510 , DCPM Daemon 325 of FIG . 3 may sort the
bins in cache 125 of FIG . 1 . How the bins are sorted may
depend on the selection statistic used . For example , if
selection statistic 1035 of FIG . 10 is to select bins based on
the bins that are most used , then the bins may be sorted by

access count . Whether the bins need to be sorted depends on
selection statistic 1035 of FIG . 10 : in some embodiments of
the inventive concept , block 1510 may be omitted , as shown
by dashed line 1515 . At block 1520 , the percentage of bins
that satisfy selection statistic 1035 of FIG . 10 in each virtual
machine may be computed . Finally , at block 1525 , cache
partitioner 1025 of FIG . 10 may partition performance
guarantee zone 505 of FIGS . 5A - 5C into regions 910 - 1
through 910 - 4 in proportion to the percentage of bins that
satisfy selection statistic 1035 of FIG . 10 in each virtual
machine .
[0104] In FIGS . 11A - 15 , some embodiments of the inven
tive concept are shown . But a person skilled in the art will
recognize that other embodiments of the inventive concept
are also possible , by changing the order of the blocks , by
omitting blocks , or by including links not shown in the
drawings . All such variations of the flowcharts are consid
ered to be embodiments of the inventive concept , whether
expressly described or not .
f0105] The following discussion is intended to provide a
brief , general description of a suitable machine or machines
in which certain aspects of the inventive concept may be
implemented . The machine or machines may be controlled ,
at least in part , by input from conventional input devices ,
such as keyboards , mice , etc . , as well as by directives
received from another machine , interaction with a virtual
reality (VR) environment , biometric feedback , or other input
signal . As used herein , the term “ machine ” is intended to
broadly encompass a single machine , a virtual machine , or
a system of communicatively coupled machines , virtual
machines , or devices operating together . Exemplary
machines include computing devices such as personal com
puters , workstations , servers , portable computers , handheld
devices , telephones , tablets , etc . , as well as transportation
devices , such as private or public transportation , e . g . , auto
mobiles , trains , cabs , etc .
[0106] The machine or machines may include embedded
controllers , such as programmable or non - programmable
logic devices or arrays , Application Specific Integrated
Circuits (ASICs) , embedded computers , smart cards , and the
like . The machine or machines may utilize one or more
connections to one or more remote machines , such as
through a network interface , modem , or other communica
tive coupling . Machines may be interconnected by way of a
physical and / or logical network , such as an intranet , the
Internet , local area networks , wide area networks , etc . One
skilled in the art will appreciate that network communication
may utilize various wired and / or wireless short range or long
range carriers and protocols , including radio frequency (RF) ,
satellite , microwave , Institute of Electrical and Electronics
Engineers (IEEE) 802 . 11 , Bluetooth® , optical , infrared ,
cable , laser , etc .
[0107] Embodiments of the present inventive concept may
be described by reference to or in conjunction with associ
ated data including functions , procedures , data structures ,
application programs , etc . which when accessed by a
machine results in the machine performing tasks or defining
abstract data types or low - level hardware contexts . Associ
ated data may be stored in , for example , the volatile and / or
non - volatile memory , e . g . , RAM , ROM , etc . , or in other
storage devices and their associated storage media , includ
ing hard - drives , floppy - disks , optical storage , tapes , flash
memory , memory sticks , digital video disks , biological
storage , etc . Associated data may be delivered over trans

US 2019 / 0163636 A1 May 30 , 2019

mission environments , including the physical and / or logical
network , in the form of packets , serial data , parallel data ,
propagated signals , etc . , and may be used in a compressed
or encrypted format . Associated data may be used in a
distributed environment , and stored locally and / or remotely
for machine access .
0108] Embodiments of the inventive concept may include

a tangible , non - transitory machine - readable medium com
prising instructions executable by one or more processors ,
the instructions comprising instructions to perform the ele
ments of the inventive concepts as described herein .
[0109] The various operations of methods described above
may be performed by any suitable means capable of per
forming the operations , such as various hardware and / or
software component (s) , circuits , and / or module (s) . The soft
ware may comprise an ordered listing of executable instruc
tions for implementing logical functions , and may be
embodied in any “ processor - readable medium ” for use by or
in connection with an instruction execution system , appa
ratus , or device , such as a single or multiple - core processor
or processor - containing system .
[0110] The blocks or steps of a method or algorithm and
functions described in connection with the embodiments
disclosed herein may be embodied directly in hardware , in
a software module executed by a processor , or in a combi
nation of the two . If implemented in software , the functions
may be stored on or transmitted over as one or more
instructions or code on a tangible , non - transitory computer
readable medium . A software module may reside in Random
Access Memory (RAM) , flash memory , Read Only Memory
(ROM) , Electrically Programmable ROM (EPROM) , Elec
trically Erasable Programmable ROM (EEPROM) , regis
ters , hard disk , a removable disk , a CD ROM , or any other
form of storage medium known in the art .
[0111] Having described and illustrated the principles of
the inventive concept with reference to illustrated embodi
ments , it will be recognized that the illustrated embodiments
may be modified in arrangement and detail without depart
ing from such principles , and may be combined in any
desired manner . And , although the foregoing discussion has
focused on particular embodiments , other configurations are
contemplated . In particular , even though expressions such as
" according to an embodiment of the inventive concept ” or
the like are used herein , these phrases are meant to generally
reference embodiment possibilities , and are not intended to
limit the inventive concept to particular embodiment con
figurations . As used herein , these terms may reference the
same or different embodiments that are combinable into
other embodiments .
[0112] . The foregoing illustrative embodiments are not to
be construed as limiting the inventive concept thereof .
Although a few embodiments have been described , those
skilled in the art will readily appreciate that many modifi
cations are possible to those embodiments without materi
ally departing from the novel teachings and advantages of
the present disclosure . Accordingly , all such modifications
are intended to be included within the scope of this inventive
concept as defined in the claims .
[0113] Embodiments of the inventive concept may extend
to the following statements , without limitation :
[0114] Statement 1 . An embodiment of the inventive con
cept includes a virtual machine server , compnsing :
[0115] a processor ;
[0116] a memory ;

[0117] at least two virtual machines stored in the memory
and running on the processor ;
[0118] a virtual machine hypervisor to manage the opera
tions of the at least two virtual machines ;
[0119] a cache including at least one storage device ; and
(0120] a Dynamic Cache Partition Manager (DCPM) to
manage the division of the cache into a performance guar
antee zone and a spike buffer zone in each of a plurality of
epochs , the performance guarantee zone including regions
for each of the at least two virtual machines , the spike buffer
zone storing workload spike data for the at least two virtual
machines , the DCPM including :

[0121] a reusability statistic calculator to calculate a
reusability statistic for data stored in the cache during
a previous epoch ;

[0122] a comparator to compare the reusability statistic
with a spike threshold ;

[0123] an access statistic calculator to calculate an
access statistic for first data stored in a first perfor
mance guarantee zone during the previous epoch ;

[0124] a spike data identifier to identify second data in
a first spike buffer zone during the previous epoch that
satisfies the access statistic ; and

[0125] a cache partitioner to partition the cache into a
second performance guarantee zone for a new epoch
and a second spike buffer zone for the new epoch so
that the second spike buffer zone is large enough to
store the second data .

[0126] Statement 2 . An embodiment of the inventive con
cept includes a system according to statement 1 , wherein the
DCPM is included in one of the virtual machine server and
a data center server .
(0127] Statement 3 . An embodiment of the inventive con
cept includes a virtual machine server according to state
ment 2 , wherein :
[0128] the access statistic calculator is operative to calcu
late an average access count for the first data stored in the
performance guarantee zone during the previous epoch ; and
[0129] the spike data identifier is operative to identify the
second data in the first spike buffer zone during the previous
epoch with access counts greater than the average access
count .
10130] Statement 4 . An embodiment of the inventive con
cept includes a virtual machine server according to state
ment 3 , wherein :
[0131] the access statistic calculator is operative to calcu
late an average access count for the first data in the perfor
mance guarantee zone during a plurality of previous epochs ;
and
[0132] the spike data identifier is operative to identify the
second data in the first spike buffer zone during the plurality
of previous epochs with access counts greater than the
average access count .
0133] Statement 5 . An embodiment of the inventive con
cept includes a virtual machine server according to state
ment 2 , wherein :
[0134] the DCPM further includes a percentage calculator
to calculate a first percentage of hits in the performance
guarantee zone during the previous epoch and a second
percentage of hits in the spike buffer zone during the
previous epoch ; and
[0135] the cache partitioner is operative to partition the
cache in the virtual machine server into a third performance

US 2019 / 0163636 A1 May 30 , 2019
12

guarantee zone and a third spike buffer zone proportional to
the first percentage of hits and the second percentage of hits .
[0136] Statement 6 . An embodiment of the inventive con
cept includes a virtual machine server according to state
ment 5 , wherein the percentage calculator is operative to
calculate a first percentage of hits in the performance guar
antee zone during a plurality of previous epochs and a
second percentage of hits in the spike buffer zone during the
plurality of previous epochs .
[0137] Statement 7 . An embodiment of the inventive con
cept includes a virtual machine server according to state
ment 2 , wherein the reusability statistic calculator is opera
tive to calculate the reusability statistic as a difference
between a current number of bins in the cache in the
previous epoch and a previous number of bins in the cache
in a second previous epoch , divided by the current number
of bins in the cache in the previous epoch .
[0138] Statement 8 . An embodiment of the inventive con
cept includes a virtual machine server according to state
ment 7 , wherein the reusability statistic calculator is opera
tive to calculate the difference between the current number
of bins in the cache in the previous epoch and the previous
number of bins in the cache in the second previous epoch as
a smallest difference between the current number of bins in
the cache in the previous epoch and a plurality of previous
numbers of bins in the cache in a plurality of previous
epochs .
(0139] Statement 9 . An embodiment of the inventive con
cept includes a virtual machine server according to state
ment 2 , wherein :
10140] the DCPM includes :

10141] a selection statistic ; and
[0142] an identifier to identify a percentage of the first

data in the first performance guarantee zone during the
previous epoch that satisfy the selection statistic for
each virtual machine storing data in the first perfor
mance guarantee zone ; and

[0143] the cache partitioner is operative to allocate a
plurality of regions in the second performance guarantee
zone for the new epoch in proportion to the percentages for
each virtual machine .
[0144] Statement 10 . An embodiment of the inventive
concept includes a virtual machine server according to
statement 9 , wherein :
[0145] the selection statistic includes a threshold number
of bins ; and
[0146] the identifier is operative to identify a subset of the
plurality of bins with corresponding access counts that
exceeds the threshold number of bins .
[0147] Statement 11 . An embodiment of the inventive
concept includes a virtual machine server according to
statement 9 , wherein the selection statistic includes the
selection statistic for the first data in the first performance
guarantee zone during the previous epoch .
[0148] Statement 12 . An embodiment of the inventive
concept includes a virtual machine server according to
statement 9 , wherein the selection statistic includes the
selection statistic for the first data in the first performance
guarantee zone during a plurality of previous epochs .
[0149] Statement 13 . An embodiment of the inventive
concept includes a virtual machine server according to
statement 12 , wherein the memory stores a history of sizes
of the regions during the plurality of previous epochs .

[0150] Statement 14 . An embodiment of the inventive
concept includes a virtual machine server according to
statement 9 , wherein the regions for each of the at least two
virtual machines in the first performance guarantee zone are
initially allocated in equal sizes .
[0151] Statement 15 . An embodiment of the inventive
concept includes a virtual machine server according to
statement 9 , wherein the regions for each of the at least two
virtual machines in the first performance guarantee zone are
initially allocated in proportion to at least two weights
correlated to at least two service level agreements for the at
least two virtual machines .
[0152] Statement 16 . An embodiment of the inventive
concept includes a virtual machine server according to
statement 2 , wherein the first performance guarantee zone
and the spike buffer zone are initially allocated in equal
sizes .
10153] Statement 17 . An embodiment of the inventive
concept includes a system , comprising :
[0154] at least two virtual machine servers , each of the at
least two virtual machine servers including :

[0155] a processor ;
10156] a memory ;
[0157] at least one virtual machine ; and
[0158] a virtual machine hypervisor to manage the

operations of the at least one virtual machine ;
[0159] at least one cache including at least one storage
device ; and
[0160] a Dynamic Cache Partition Manager (DCPM) Con
troller to manage the division of the at least one cache into
a performance guarantee zone and a spike buffer zone in
each of a plurality of epochs , the performance guarantee
zone including regions for each of the at least one virtual
machine on each of the at least two virtual machine servers ,
the spike buffer zone storing workload spike data for each of
the at least one virtual machine on each of the at least two
virtual machine servers , the DCPM Controller including :

[0161] a reusability statistic calculator to calculate a
reusability statistic for data stored in the at least one
cache during a previous epoch ;

[0162] a comparator to compare the reusability statistic
with a spike threshold ;

0163] an access statistic calculator to calculate an
access statistic for first data stored in a first perfor
mance guarantee zone during the previous epoch ;

10164) a spike data identifier to identify second data in
a first spike buffer zone during the previous epoch that
satisfies the access statistic ; and

[0165] a cache partitioner to partition the at least one
cache into a second performance guarantee zone for a
new epoch and a second spike buffer zone for the new
epoch so that the second spike buffer zone is large
enough to store the second data .

[0166] Statement 18 . An embodiment of the inventive
concept includes a system according to statement 17 , further
comprising a data center server , the data center server
including the DCPM Controller .
101671 . Statement 19 . An embodiment of the inventive
concept includes a system according to statement 18 ,
wherein the data center server further includes the at least
one cache .
[0168] Statement 20 . An embodiment of the inventive
concept includes a system according to statement 18 ,

US 2019 / 0163636 A1 May 30 , 2019
13

wherein the at least one cache is located on a machine other
than the virtual machine server and the data center server .
[0169] Statement 21 . An embodiment of the inventive
concept includes a system according to statement 18 ,
wherein each of the at least two virtual machine servers
includes a DCPM Daemon to monitor workloads for the at
least one virtual machine .
[0170] Statement 22 . An embodiment of the inventive
concept includes a system according to statement 17 ,
wherein :
[0171] the access statistic calculator is operative to calcu
late an average access count for the first data stored in the
performance guarantee zone during the previous epoch ; and
[0172] the spike data identifier is operative to identify the
second data in the first spike buffer zone during the previous
epoch with access counts greater than the average access
count .
[0173] Statement 23 . An embodiment of the inventive
concept includes a system according to statement 22 ,
wherein :
10174] the access statistic calculator is operative to calcu
late an average access count for the first data in the perfor
mance guarantee zone during a plurality of previous epochs ;
and
[0175] the spike data identifier is operative to identify the
second data in the first spike buffer zone during the plurality
of previous epochs with access counts greater than the
average access count .
[0176] Statement 24 . An embodiment of the inventive
concept includes a system according to statement 17 ,
wherein :
[0177] the DCPM Controller further includes a percentage
calculator to calculate a first percentage of hits in the
performance guarantee zone during the previous epoch and
a second percentage of hits in the spike buffer zone during
the previous epoch ; and
10178] the cache partitioner is operative to partition the
cache in the virtual machine server into a third performance
guarantee zone and a third spike buffer zone proportional to
the first percentage of hits and the second percentage of hits .
[0179] Statement 25 . An embodiment of the inventive
concept includes a system according to statement 24 ,
wherein the percentage calculator is operative to calculate a
first percentage of hits in the performance guarantee zone
during a plurality of previous epochs and a second percent
age of hits in the spike buffer zone during the plurality of
previous epochs .
[0180] Statement 26 . An embodiment of the inventive
concept includes a system according to statement 17 ,
wherein the reusability statistic calculator is operative to
calculate the reusability statistic as a difference between a
current number of bins in the cache in the previous epoch
and a previous number of bins in the cache in a second
previous epoch , divided by the current number of bins in the
cache in the previous epoch .
[0181] Statement 27 . An embodiment of the inventive
concept includes a system according to statement 26 ,
wherein the reusability statistic calculator is operative to
calculate the difference between the current number of bins
in the cache in the previous epoch and the previous number
of bins in the cache in the second previous epoch as a
smallest difference between the current number of bins in the

cache in the previous epoch and a plurality of previous
numbers of bins in the cache in a plurality of previous
epochs .
10182] Statement 28 . An embodiment of the inventive
concept includes a system according to statement 17 ,
wherein :
[0183] the DCPM Controller includes :

[0184] a selection statistic ; and
[0185] an identifier to identify a percentage of the first

data in the first performance guarantee zone during the
previous epoch that satisfy the selection statistic for
each virtual machine storing data in the first perfor
mance guarantee zone ; and

(0186] the cache partitioner is operative to allocate a
plurality of regions in the second performance guarantee
zone for the new epoch in proportion to the percentages for
each virtual machine .
[0187] Statement 29 . An embodiment of the inventive
concept includes a system according to statement 28 ,
wherein :
[0188] the selection statistic includes a threshold number
of bins ; and
[0189] the identifier is operative to identify a subset of the
plurality of bins with corresponding access counts that
exceeds the threshold number of bins .
[0190] Statement 30 . An embodiment of the inventive
concept includes a system according to statement 28 ,
wherein the selection statistic includes the selection statistic
for the first data in the first performance guarantee zone
during the previous epoch .
[0191] Statement 31 . An embodiment of the inventive
concept includes a system according to statement 28 ,
wherein the selection statistic includes the selection statistic
for the first data in the first performance guarantee zone
during a plurality of previous epochs .
[0192] Statement 32 . An embodiment of the inventive
concept includes a system according to statement 31 ,
wherein the memory stores a history of sizes of the regions
during the plurality of previous epochs .
[0193] Statement 33 . An embodiment of the inventive
concept includes a system according to statement 28 ,
wherein the regions for each of the at least two virtual
machines in the first performance guarantee zone are ini
tially allocated in equal sizes .
[0194] Statement 34 . An embodiment of the inventive
concept includes a system according to statement 28 ,
wherein the regions for each of the at least two virtual
machines in the first performance guarantee zone are ini
tially allocated in proportion to at least two weights corre
lated to at least two service level agreements for the at least
two virtual machines .
[0195] Statement 35 . An embodiment of the inventive
concept includes a system according to statement 17 ,
wherein the first performance guarantee zone and the spike
buffer zone are initially allocated in equal sizes .
[0196] Statement 36 . An embodiment of the inventive
concept includes a method , comprising :
[0197] dividing a cache into a first performance guarantee
zone and a first spike buffer zone ;
[0198] determining a reusability statistic for data stored in
the cache in a previous epoch ; and

US 2019 / 0163636 A1 May 30 , 2019
14

1 . marising .

[0199] if the reusability statistic is at least as large as a
spike threshold :

[0200] determining an access statistic for first data
stored in the first performance guarantee zone in a
previous epoch ;

[0201] identifying second data stored in the first spike
buffer zone during the previous epoch that satisfies the
access statistic ; and

[0202] redividing the cache into a second performance
guarantee zone for a new epoch and a second spike
buffer zone for the new epoch so that the second spike
buffer zone is large enough to store the second data .

[0203] Statement 37 . An embodiment of the inventive
concept includes a method according to statement 36 ,
wherein the cache is in one of a virtual machine server , a
data center server , and a machine in a system including the
virtual machine server and the data center server .
[0204 Statement 38 . An embodiment of the inventive
concept includes a method according to statement 36 ,
wherein :
10205) determining an access statistic for first data stored
in the first performance guarantee zone in a previous epoch
includes determining an average access count for first data
stored in the first performance guarantee zone during the
previous epoch ; and
[0206] identifying second data stored in the first spike
buffer zone during the previous epoch that satisfies the
access statistic includes identifying the second data stored in
the first spike buffer zone during the previous epoch with
access counts greater than the average access count .
[0207] Statement 39 . An embodiment of the inventive
concept includes a method according to statement 38 ,
wherein :
[0208] determining an average access count for first data
stored in the performance guarantee zone during the previ
ous epoch includes determining the average access count for
first data stored in the performance guarantee zone during a
plurality of previous epochs ; and
[0209] identifying the second data stored in the first spike
buffer zone during the previous epoch with access counts
greater than the average access count includes identifying
the second data stored in the first spike buffer zone during
the plurality of previous epochs with access counts greater
than the average access count .
[0210] Statement 40 . An embodiment of the inventive
concept includes a method according to statement 36 ,
wherein , if the reusability statistic is less than the spike
threshold :
[0211] determining a first percentage of hits in the perfor
mance guarantee zone during the previous epoch ;
[0212] determining a second percentage of hits in the
spike buffer zone during the previous epoch ; and
[0213] redividing the cache into a third performance guar
antee zone and a third spike buffer zone proportional to the
first percentage of hits and the second percentage of hits .
[0214) Statement 41 . An embodiment of the inventive
concept includes a method according to statement 40 ,
wherein :
[0215] determining a first percentage of hits in the perfor
mance guarantee zone during the previous epoch includes
determining the first percentage of hits in the performance
guarantee zone during a plurality of previous epochs ; and
[0216] determining a second percentage of hits in the
spike buffer zone during the previous epoch includes deter

mining the second percentage of hits in the spike buffer zone
during a plurality of previous epochs .
[0217] Statement 42 . An embodiment of the inventive
concept includes a method according to statement 36 ,
wherein determining a reusability statistic for data stored in
the cache in a previous epoch includes :
[0218] determining a difference between a current number
of bins in the cache in the previous epoch and a previous
number of bins in the cache in a second previous epoch ; and
[0219) determining a ratio of the difference and the current
number of bins in the cache in the previous epoch .
(0220] Statement 43 . An embodiment of the inventive
concept includes a method according to statement 42 ,
wherein :
(0221) determining a difference between a current number
of bins in the cache in the previous epoch and a previous
number of bins in the cache in a second previous epoch
includes determining a smallest difference between the
current number of bins in the cache in the previous epoch
and a plurality of previous numbers of bins in the cache in
a plurality of previous epochs ; and
[0222] determining a ratio of the difference and the current
number of bins in the cache in the previous epoch includes
determining the ratio of the smallest difference and the
current number of bins in the cache in the previous epoch .
0223] . Statement 44 . An embodiment of the inventive
concept includes a method according to statement 36 , fur
ther comprising :
02241 determining a selection statistic for the first data in
the first performance guarantee zone ;
[0225] identifying a percentage of the first data in the first
performance guarantee zone during the previous epoch that
satisfy the selection statistic for each virtual machine storing
data in the first performance guarantee zone ; and
[0226] allocating a plurality of regions in the second
performance guarantee zone for the new epoch in proportion
to the percentages for each virtual machine .
[0227] Statement 45 . An embodiment of the inventive
concept includes a method according to statement 44 ,
wherein :
[0228] determining a selection statistic for the first data in
the first performance guarantee zone during the previous
epoch includes determining a threshold number of bins ; and
[0229] identifying a percentage of the first data in the first
performance guarantee zone during the previous epoch that
satisfy the selection statistic for each virtual machine storing
data in the first performance guarantee zone includes :

[0230] sorting a plurality of bins in the first performance
guarantee zone across all virtual machines by corre
sponding access counts ; and

[0231] selecting a subset of the plurality of bins as
sorted by corresponding access counts that exceeds the
threshold number of bins .

[0232] Statement 46 . An embodiment of the inventive
concept includes a method according to statement 44 ,
wherein determining a selection statistic for the first data in
the first performance guarantee zone includes determining
the selection statistic for the first data in the first perfor
mance guarantee zone during the previous epoch .
[0233] Statement 47 . An embodiment of the inventive
concept includes a method according to statement 44 ,
wherein identifying a percentage of the first data in the first
performance guarantee zone during the previous epoch that
satisfy the selection statistic for each virtual machine storing

US 2019 / 0163636 A1 May 30 , 2019
15

data in the first performance guarantee zone includes iden -
tifying the percentage of the first data in the first perfor
mance guarantee zone during a plurality of previous epochs
that satisfy the selection statistic for each virtual machine
storing data in the first performance guarantee zone .
0234] Statement 48 . An embodiment of the inventive
concept includes a method according to statement 44 , fur
ther comprising initially allocating the plurality of regions in
the second performance guarantee zone for the new epoch in
equal sizes .
[0235] Statement 49 . An embodiment of the inventive
concept includes a method according to statement 44 , fur
ther comprising initially allocating the plurality of regions in
proportion to a plurality of weights correlated to a plurality
of service level agreements for the plurality of virtual
machines .
[0236] Statement 50 . An embodiment of the inventive
concept includes a method according to statement 36 ,
wherein dividing a cache into a first performance guarantee
zone and a first spike buffer zone includes initially dividing
the cache into equally sized first performance and first spike
buffer zones .
[0237] Statement 51 . An embodiment of the inventive
concept includes an article , comprising a non - transitory
storage medium , the non - transitory storage medium having
stored thereon instructions that , when executed by a
machine , result in :
[0238] dividing a cache into a first performance guarantee
zone and a first spike buffer zone ;
[0239] determining a reusability statistic for data stored in
the cache in a previous epoch ; and
[0240] if the reusability statistic is at least as large as a
spike threshold :

[0241] determining an access statistic for first data
stored in the first performance guarantee zone in a
previous epoch ;

[0242] identifying second data stored in the first spike
buffer zone during the previous epoch that satisfies the
access statistic ; and

[0243] redividing the cache into a second performance
guarantee zone for a new epoch and a second spike
buffer zone for the new epoch so that the second spike
buffer zone is large enough to store the second data .

10244] Statement 52 . An embodiment of the inventive
concept includes an article according to statement 51 ,
wherein the cache is in one of a virtual machine server , a
data center server , and a machine in a system including the
virtual machine server and the data center server .
[0245) Statement 53 . An embodiment of the inventive
concept includes an article according to statement 51 ,
wherein :
102461 determining an access statistic for first data stored
in the first performance guarantee zone in a previous epoch
includes determining an average access count for first data
stored in the first performance guarantee zone during the
previous epoch ; and
[0247] identifying second data stored in the first spike
buffer zone during the previous epoch that satisfies the
access statistic includes identifying the second data stored in
the first spike buffer zone during the previous epoch with
access counts greater than the average access count .
[0248] Statement 54 . An embodiment of the inventive
concept includes an article according to statement 53 ,
wherein :

(0249] determining an average access count for first data
stored in the performance guarantee zone during the previ
ous epoch includes determining the average access count for
first data stored in the performance guarantee zone during a
plurality of previous epochs ; and
[0250] identifying the second data stored in the first spike
buffer zone during the previous epoch with access counts
greater than the average access count includes identifying
the second data stored in the first spike buffer zone during
the plurality of previous epochs with access counts greater
than the average access count .
(0251) Statement 55 . An embodiment of the inventive
concept includes an article according to statement 51 ,
wherein , if the reusability statistic is less than the spike
threshold :
[0252] determining a first percentage of hits in the perfor
mance guarantee zone during the previous epoch ;
[0253 determining a second percentage of hits in the
spike buffer zone during the previous epoch ; and
[0254] redividing the cache into a third performance guar
antee zone and a third spike buffer zone proportional to the
first percentage of hits and the second percentage of hits .
[0255] . Statement 56 . An embodiment of the inventive
concept includes an article according to statement 55 ,
wherein :
[0256] determining a first percentage of hits in the perfor
mance guarantee zone during the previous epoch includes
determining the first percentage of hits in the performance
guarantee zone during a plurality of previous epochs ; and
[0257] determining a second percentage of hits in the
spike buffer zone during the previous epoch includes deter
mining the second percentage of hits in the spike buffer zone
during a plurality of previous epochs .
(0258) Statement 57 . An embodiment of the inventive
concept includes an article according to statement 51 ,
wherein determining a reusability statistic for data stored in
the cache in a previous epoch includes :
[0259] determining a difference between a current number
of bins in the cache in the previous epoch and a previous
number of bins in the cache in a second previous epoch ; and
(0260) determining a ratio of the difference and the current
number of bins in the cache in the previous epoch .
[0261] Statement 58 . An embodiment of the inventive
concept includes an article according to statement 57 ,
wherein :
[0262] determining a difference between a current number
of bins in the cache in the previous epoch and a previous
number of bins in the cache in a second previous epoch
includes determining a smallest difference between the
current number of bins in the cache in the previous epoch
and a plurality of previous numbers of bins in the cache in
a plurality of previous epochs ; and
[0263] determining a ratio of the difference and the current
number of bins in the cache in the previous epoch includes
determining the ratio of the smallest difference and the
current number of bins in the cache in the previous epoch .
[0264] Statement 59 . An embodiment of the inventive
concept includes an article according to statement 51 , the
non - transitory storage medium having stored thereon further
instructions that , when executed by the machine , result in :
[0265) determining a selection statistic for the first data in
the first performance guarantee zone ;
(0266] identifying a percentage of the first data in the first
performance guarantee zone during the previous epoch that

US 2019 / 0163636 A1 May 30 , 2019

satisfy the selection statistic for each virtual machine storing
data in the first performance guarantee zone ; and
[0267] allocating a plurality of regions in the second
performance guarantee zone for the new epoch in proportion
to the percentages for each virtual machine .
[0268] Statement 60 . An embodiment of the inventive
concept includes an article according to statement 59 ,
wherein :
[0269] determining a selection statistic for the first data in
the first performance guarantee zone during the previous
epoch includes determining a threshold number of bins ; and
[0270] identifying a percentage of the first data in the first
performance guarantee zone during the previous epoch that
satisfy the selection statistic for each virtual machine storing
data in the first performance guarantee zone includes :

[0271] sorting a plurality of bins in the first performance
guarantee zone across all virtual machines by corre
sponding access counts ; and

[0272] selecting a subset of the plurality of bins as
sorted by corresponding access counts that exceeds the
threshold number of bins .

[0273] Statement 61 . An embodiment of the inventive
concept includes an article according to statement 59 ,
wherein determining a selection statistic for the first data in
the first performance guarantee zone includes determining
the selection statistic for the first data in the first perfor
mance guarantee zone during the previous epoch .
[0274] Statement 62 . An embodiment of the inventive
concept includes an article according to statement 59 ,
wherein identifying a percentage of the first data in the first
performance guarantee zone during the previous epoch that
satisfy the selection statistic for each virtual machine storing
data in the first performance guarantee zone includes iden
tifying the percentage of the first data in the first perfor
mance guarantee zone during a plurality of previous epochs
that satisfy the selection statistic for each virtual machine
storing data in the first performance guarantee zone .
[0275] Statement 63 . An embodiment of the inventive
concept includes an article according to statement 59 , the
non - transitory storage medium having stored thereon further
instructions that , when executed by the machine , result in
initially allocating the plurality of regions in the second
performance guarantee zone for the new epoch in equal
sizes .
[0276] Statement 64 . An embodiment of the inventive
concept includes an article according to statement 59 , the
non - transitory storage medium having stored thereon further
instructions that , when executed by the machine , result in
initially allocating the plurality of regions in proportion to a
plurality of weights correlated to a plurality of service level
agreements for the plurality of virtual machines .
(0277) Statement 65 . An embodiment of the inventive
concept includes an article according to statement 51 ,
wherein dividing a cache into a first performance guarantee
zone and a first spike buffer zone includes initially dividing
the cache into equally sized first performance and first spike
buffer zones .
[0278] Consequently , in view of the wide variety of per
mutations to the embodiments described herein , this detailed
description and accompanying material is intended to be
illustrative only , and should not be taken as limiting the
scope of the inventive concept . What is claimed as the

inventive concept , therefore , is all such modifications as
may come within the scope and spirit of the following claims
and equivalents thereto .
What is claimed is :
1 . A system , comprising :
a virtual machine server , including :

a processor ;
a memory ;
at least two virtual machines stored in the memory and

running on the processor ;
a virtual machine hypervisor to manage the operations
of the at least two virtual machines ; and

a cache including at least one storage device ; and
a Dynamic Cache Partition Manager (DCPM) to manage

the division of the cache into a performance guarantee
zone and a spike buffer zone in each of a plurality of
epochs , the performance guarantee zone including
regions for each of the at least two virtual machines , the
spike buffer zone storing workload spike data for the at
least two virtual machines , the DCPM including :
a reusability statistic calculator to calculate a reusabil

ity statistic for data stored in the cache during a
previous epoch ;

a comparator to compare the reusability statistic with a
spike threshold ;

an access statistic calculator to calculate an access
statistic for first data stored in a first performance
guarantee zone during the previous epoch ;

a spike data identifier to identify second data in a first
spike buffer zone during the previous epoch that
satisfies the access statistic ; and

a cache partitioner to partition the cache into a second
performance guarantee zone for a new epoch and a
second spike buffer zone for the new epoch so that
the second spike buffer zone is large enough to store
the second data .

2 . A system according to claim 1 , wherein the DCPM is
included in one of the virtual machine server and a data
center server .

3 . A system according to claim 2 , wherein :
the DCPM further includes a percentage calculator to

calculate a first percentage of hits in the performance
guarantee zone during the previous epoch and a second
percentage of hits in the spike buffer zone during the
previous epoch ; and

the cache partitioner is operative to partition the cache in
the virtual machine server into a third performance
guarantee zone and a third spike buffer zone propor
tional to the first percentage of hits and the second
percentage of hits .

4 . A system according to claim 2 , wherein the reusability
statistic calculator is operative to calculate the reusability
statistic as a difference between a current number of bins in
the cache in the previous epoch and a previous number of
bins in the cache in a second previous epoch , divided by the
current number of bins in the cache in the previous epoch .

5 . A system according to claim 2 , wherein :
the DCPM includes :

a selection statistic ; and
an identifier to identify a percentage of the first data in

the first performance guarantee zone during the
previous epoch that satisfy the selection statistic for
each virtual machine storing data in the first perfor
mance guarantee zone ; and

US 2019 / 0163636 A1 May 30 , 2019
17

the cache partitioner is operative to allocate a plurality of
regions in the second performance guarantee zone for
the new epoch in proportion to the percentages for each
virtual machine .

6 . A system according to claim 5 , wherein :
the selection statistic includes a threshold number of bins ;

and
the identifier is operative to identify a subset of the

plurality of bins with corresponding access counts that
exceeds the threshold number of bins .

7 . A system according to claim 5 , wherein the regions for
each of the at least two virtual machines in the first perfor
mance guarantee zone are initially allocated in proportion to
at least two weights correlated to at least two service level
agreements for the at least two virtual machines .

8 . A system , comprising :
at least two virtual machine servers , each of the at least
two virtual machine servers including :
a processor ;
a memory ;
at least one virtual machine ; and
a virtual machine hypervisor to manage the operations

of the at least one virtual machine ;
at least one cache including at least one storage device ;

and
a Dynamic Cache Partition Manager (DCPM) Controller

to manage the division of the at least one cache into a
performance guarantee zone and a spike buffer zone in
each of a plurality of epochs , the performance guaran
tee zone including regions for each of the at least one
virtual machine on each of the at least two virtual
machine servers , the spike buffer zone storing work
load spike data for each of the at least one virtual
machine on each of the at least two virtual machine
servers , the DCPM Controller including :
a reusability statistic calculator to calculate a reusabil

ity statistic for data stored in the at least one cache
during a previous epoch ;

a comparator to compare the reusability statistic with a
spike threshold ;

an access statistic calculator to calculate an access
statistic for first data stored in a first performance
guarantee zone during the previous epoch ;

a spike data identifier to identify second data in a first
spike buffer zone during the previous epoch that
satisfies the access statistic ; and

a cache partitioner to partition the at least one cache
into a second performance guarantee zone for a new
epoch and a second spike buffer zone for the new
epoch so that the second spike buffer zone is large
enough to store the second data .

9 . A system according to claim 8 , further comprising a
data center server , the data center server including the
DCPM Controller .

10 . A system according to claim 9 , wherein the data center
server further includes the at least one cache .

11 . A system according to claim 9 , wherein each of the at
least two virtual machine servers includes a DCPM Daemon
to monitor workloads for the at least one virtual machine .

12 . A system according to claim 8 , wherein :
the access statistic calculator is operative to calculate an
average access count for the first data stored in the
performance guarantee zone during the previous epoch ;
and

the spike data identifier is operative to identify the second
data in the first spike buffer zone during the previous
epoch with access counts greater than the average
access count .

13 . A system according to claim 8 , wherein :
the DCPM Controller includes :

a selection statistic ; and
an identifier to identify a percentage of the first data in

the first performance guarantee zone during the
previous epoch that satisfy the selection statistic for
each virtual machine storing data in the first perfor
mance guarantee zone ; and

the cache partitioner is operative to allocate a plurality of
regions in the second performance guarante e for
the new epoch in proportion to the percentages for each
virtual machine .

14 . A system according to claim 13 , wherein :
the selection statistic includes a threshold number of bins ;

and
the identifier is operative to identify a subset of the

plurality of bins with corresponding access counts that
exceeds the threshold number of bins .

15 . A method , comprising :
dividing a cache into a first performance guarantee zone

and a first spike buffer zone ;
determining a reusability statistic for data stored in the

cache in a previous epoch ; and
if the reusability statistic is at least as large as a spike

threshold :
determining an access statistic for first data stored in

the first performance guarantee zone in a previous
epoch ;

identifying second data stored in the first spike buffer
zone during the previous epoch that satisfies the
access statistic ; and

redividing the cache into a second performance guar
antee zone for a new epoch and a second spike buffer
zone for the new epoch so that the second spike
buffer zone is large enough to store the second data .

16 . A method according to claim 15 , wherein the cache is
in one of a virtual machine server , a data center server , and
a machine in a system including the virtual machine server
and the data center server .

17 . A method according to claim 15 , wherein :
determining an access statistic for first data stored in the

first performance guarantee zone in a previous epoch
includes determining an average access count for first
data stored in the first performance guarantee zone
during the previous epoch ; and

identifying second data stored in the first spike buffer zone
during the previous epoch that satisfies the access
statistic includes identifying the second data stored in
the first spike buffer zone during the previous epoch
with access counts greater than the average access
count .

18 . A method according to claim 17 , wherein :
determining an average access count for first data stored

in the performance guarantee zone during the previous
epoch includes determining the average access count
for first data stored in the performance guarantee zone
during a plurality of previous epochs ; and

identifying the second data stored in the first spike buffer
zone during the previous epoch with access counts
greater than the average access count includes identi

US 2019 / 0163636 A1 May 30 , 2019

fying the second data stored in the first spike buffer
zone during the plurality of previous epochs with
access counts greater than the average access count .

19 . A method according to claim 15 , wherein , if the
reusability statistic is less than the spike threshold :

determining a first percentage of hits in the performance
guarantee zone during the previous epoch ;

determining a second percentage of hits in the spike buffer
zone during the previous epoch ; and

redividing the cache into a third performance guarantee
ze and third spike buferze proportional to the
first percentage of hits and the second percentage of
hits .

20 . A method according to claim 19 , wherein :
determining a first percentage of hits in the performance

guarantee zone during the previous epoch includes
determining the first percentage of hits in the perfor
mance guarantee zone during a plurality of previous
epochs ; and

determining a second percentage of hits in the spike buffer
zone during the previous epoch includes determining
the second percentage of hits in the spike buffer zone
during a plurality of previous epochs .

21 . A method according to claim 15 , wherein determining
a reusability statistic for data stored in the cache in a
previous epoch includes :

determining a difference between a current number of
bins in the cache in the previous epoch and a previous
number of bins in the cache in a second previous epoch ;
and

determining a ratio of the difference and the current
number of bins in the cache in the previous epoch .

22 . A method according to claim 21 , wherein :
determining a difference between a current number of
bins in the cache in the previous epoch and a previous
number of bins in the cache in a second previous epoch
includes determining a smallest difference between the
current number of bins in the cache in the previous
epoch and a plurality of previous numbers of bins in the
cache in a plurality of previous epochs ; and

determining a ratio of the difference and the current
number of bins in the cache in the previous epoch
includes determining the ratio of the smallest difference
and the current number of bins in the cache in the
previous epoch .

23 . A method according to claim 15 , further comprising :
determining a selection statistic for the first data in the

first performance guarantee zone ;
identifying a percentage of the first data in the first

performance guarantee zone during the previous epoch
that satisfy the selection statistic for each virtual
machine storing data in the first performance guarantee
zone ; and

allocating a plurality of regions in the second performance
guarantee zone for the new epoch in proportion to the
percentages for each virtual machine .

24 . A method according to claim 23 , wherein :
determining a selection statistic for the first data in the

first performance guarantee zone during the previous
epoch includes determining a threshold number of bins ;
and

identifying a percentage of the first data in the first
performance guarantee zone during the previous epoch
that satisfy the selection statistic for each virtual
machine storing data in the first performance guarantee
zone includes :
sorting a plurality of bins in the first performance

guarantee zone across all virtual machines by corre
sponding access counts ; and

selecting a subset of the plurality of bins as sorted by
corresponding access counts that exceeds the thresh
old number of bins .

25 . A method according to claim 23 , wherein identifying
a percentage of the first data in the first performance
guarantee zone during the previous epoch that satisfy the
selection statistic for each virtual machine storing data in the
first performance guarantee zone includes identifying the
percentage of the first data in the first performance guarantee
zone during a plurality of previous epochs that satisfy the
selection statistic for each virtual machine storing data in the
first performance guarantee zone .

26 . A method according to claim 23 , further comprising
initially allocating the plurality of regions in proportion to a
plurality of weights correlated to a plurality of service level
agreements for the plurality of virtual machines .

27 . A method according to claim 15 , wherein dividing a
cache into a first performance guarantee zone and a first
spike buffer zone includes initially dividing the cache into
equally sized first performance and first spike buffer zones .

