
US 20190188023A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0188023 A1

Hoseinzadeh et al . (43) Pub . Date : Jun . 20 , 2019

(54) METHOD FOR DATA CENTER STORAGE
EVALUATION FRAMEWORK SIMULATION

(71) Applicant : Samsung Electronics Co . , Ltd . ,
Gyeonggi - do (KR)

(72) Inventors : Morteza Hoseinzadeh , La Jolla , CA
(US) ; Zhengyu Yang , Malden , MA
(US) ; Terence Ping Wong , San Diego ,
CA (US) ; David Evans , San Marcos ,
CA (US) (57)

Publication Classification
(51) Int . Ci .

G06F 9 / 455 (2006 . 01)
G06F 17 / 50 (2006 . 01)
G06F 9 / 4401 (2006 . 01)

(52) U . S . CI .
CPC G06F 9 / 45558 (2013 . 01) ; G06F 17 / 5009

(2013 . 01) ; G06F 2009 / 45595 (2013 . 01) ; G06F
2009 / 45579 (2013 . 01) ; G06F 9 / 4401

(2013 . 01)
ABSTRACT

An a method for simulating a data center is provided and a
non - transitory computer - readable storage medium having
recorded thereon a computer program for executing the
method of simulating a data center . The method includes
storing at least one hardware configuration file and at least
one functional description file of a data center to be simu
lated in a configuration file application ; generating a simu
lation program of the data center using the at least one
hardware configuration file and the at least one functional
description file by a data center storage evaluation frame
work (DCEF) application , and executing a flow - based simu
lation on the simulation program generated by the DCEF
application by a simulator .

(73) Assignee : Samsung Electronics Co . , Ltd .

(21) Appl . No . : 15 / 896 , 590

(22) Filed : Feb . 14 , 2018

(60)
Related U . S . Application Data

Provisional application No . 62 / 598 , 788 , filed on Dec .
14 , 2017 .

FLOW - BASED
INPUT
BUFFER BLOCK

JOB QUEUE
FLOW

* XXXXX

Www

Patent Application Publication Jun . 20 , 2019 Sheet 1 of 7 US 2019 / 0188023 A1

FLOW - BASED
INPUT BLOCK BUFFER

JOB QUEUE
O wn for FLOW

w

- - 007
FIG . 1A

EVENT - DRIVEN

Wwwwwwwwwwwwwww
www

QUEUE
LOTS

S
CARA 80

wwwwwwwwwwwww

FIG . 1B

Patent Application Publication Jun . 20 , 2019 Sheet 2 of 7 US 2019 / 0188023 A1

1201
+

DATA
CENTER

1203
DATA

CENTER

F (COBA , NEMOKANTEDET 200 A GLOBAL NETWORK / INTERNET ' 09 w

1207 2051
{ DATA

CENTER
+

DATA
CENTER

w w wwwwwwwwwwwwwwwwwwwwwwwwww FIG . 2

1201 , 203 , 205 , 207
DATA CENTER
301 3031

HOST HOST
MACHINE MACHINE

wwuuuuuu
3051

HOST
MACHINE + + + + + + + +

+ + +

+ + + + + + + + 309
NETWORK SWITCH

+ + + + + + +

+ + + + + + + +

+ + + + + + + + w 3071
HOST

MACHINE
- - - - - - -
FIG . 3

Patent Application Publication Jun . 20 , 2019 Sheet 3 of 7 US 2019 / 0188023 A1

, 301 , 303 , 305 , 307
HOST MACHINE

1413
DIMM

NVDIMM
+ + + + + +

w

LOVI

XXXXXXXXXXXXXXXXXXXXXX
ADDR / DATABUS

1403
PCI

1405 ww PCI - E + + + + + + + +

AM 1407
+ + + + + + + +

SATA

1409
IDE YYYYYYYYYYYYYYY

WY HDD SSD
YYYYYYYY

415 417 419
NNN

FIG . 4

Patent Application Publication Jun . 20 , 2019 Sheet 4 of 7 US 2019 / 0188023 A1

500
507

WORKLOAD
TRACE

509
REPLAY

5011 503 505 ,
w wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

CONFIG
FILE DCEF SIMULATOR EVALUATION

RESULTS

FIG . 5
503 , 607 , - DCEF1
DEVICE POOL
601 ,

wwwwwww

603 wwwwwwwwwwwww
FLOWSIM www

. . + . . . + . . . +

FIG . 6

Patent Application Publication Jun . 20 , 2019 Sheet 5 of 7 US 2019 / 0188023 A1

SELECT TRACE RECORD AND
PUT INITIATOR JOB IN A QUEUE - - - 701

ww

NO
702 -

YES END OF 711 IS JOB
QUEUE
EMPTY ?

TRACE FILE
REACHED ?

7031 NO ww SELECT JOB FROM QUEUE
AND RUN SIMULATION

YES 1713
OUTPUT EVALUATION

REPORT www
M m www

PROVIDE THE JOB TO A JOB DISTRIBUTION
APPLICATION TO START A FLOW 705

+

w w w

wwww EXECUTE THE FLOW FROM THE
BEGINNING OF THE FLOW * * * 707

709 NO primeren IS A NEW
TRACE

REQUIRED ?

FIG . 7

Patent Application Publication Jun . 20 , 2019 Sheet 6 of 7 US 2019 / 0188023 A1

800
8011

| TRACE FILE 1

8031
TRACE FETCH
APPLICATION

1805 809
w

JOB
QUEUE

DEVICE
POOL

807
JOB DISTRIBUTION APPLICATION

Wwwwwwwwwwwwwwww wwwwwwwwwwwwwww w

FIG . 8

2071 - oot - - t
ny JOB

DECODER

INPUTS FLOW ID WWWWWW 1905 903
RUNNER

APPLICATION
MATCHER

APPLICATION
wwwwwwwwwwwwwwwwwwwwwwwwww

JOB DISTRIBUTION APPLICATION

FIG . 9

Patent Application Publication Jun . 20 , 2019 Sheet 7 of 7 US 2019 / 0188023 A1

601 , 809
DEVICE POOL

KKKKKKKK KKKKKKKK

1003 10051
XXX

CPU DIMM
NVDIMM X

XXX 1001
MODULE WITH
FLOWS AND
BLOCKS

1009 1007
MEMORY

BUS
1015

IDE WWWXXXXXXXXXXXXXXXXXXXXXXXXXXX 1011 10134 10171
NET SATA | ?? PCI - E

1019 10211 1023 10251 XXXXXXXXXXXXXWWWXXXXXXXXXXX SSD HDD NIC + + + + + + + + + + + + + + + + +

SWITCH
1033 1027 1029 , 1031

DRIVER SYSTEM
w w

FIG . 10

US 2019 / 0188023 A1 Jun . 20 , 2019

METHOD FOR DATA CENTER STORAGE
EVALUATION FRAMEWORK SIMULATION

PRIORITY
[0001] This application claims priority under 35 U . S . C . S
119 (e) to a U . S . Provisional patent application filed on Dec .
14 , 2017 in the United States Patent and Trademark Office
and assigned Ser . No . 62 / 598 , 788 , the entire contents of
which are incorporated herein by reference .

FIELD

[0002] The present disclosure relates generally to a
method and an apparatus for simulation , and more particu
larly , to a method and apparatus for data center storage
evaluation framework (DCEF) simulation .

be more apparent from the following detailed description ,
taken in conjunction with the accompanying drawings , in
which :
[0008] FIG . 1A is an illustration of a flow - based simula
tion , according to one embodiment ;
[0009] FIG . 1B is an illustration of an event - driven simu
lation , according to one embodiment ;
[0010] FIG . 2 is a block diagram of an architecture of data
centers , according to one embodiment ;
[0011] FIG . 3 is a block diagram of a data center of FIG .
2 , according to one embodiment ;
[0012] FIG . 4 is a block diagram of a host machine of FIG .
3 , according to one embodiment ;
[0013] FIG . 5 is a block diagram of a DCEF workflow ,
according to one embodiment ;
[00141 . FIG . 6 is a block diagram of a DCEF of FIG . 5 ,
according to one embodiment ;
[0015] FIG . 7 is a flowchart of a method of simulating an
execution flow , according to one embodiment ;
[0016] FIG . 8 is a flowchart of a method of job distribution
and execution , according to one embodiment ;
[0017] FIG . 9 is a flowchart of a job distribution applica
tion of FIG . 8 , according to one embodiment ; and
[0018] FIG . 10 is a block diagram of a device pool
application of FIGS . 6 and 8 , according to one embodiment .

BACKGROUND
[0003] Organizing a data center with tens of physical host
machines running hundreds of virtual machines is costly and
time - consuming . This is even more tangible when a com
pany upgrades an existing data center to potentially benefit
from installing new devices like new processors , emerging
memory technologies , or high - end storage devices , or
employing new management algorithms like resource allo
cation . However , upgrading an entire system is not only
expensive but may also harm ongoing tasks on a data center
and incur even more expense , where the results may not be
worth the effort .
10004) Thus , there is a need for an apparatus and a method
of evaluating and estimating performance changes (e . g . , an
improvement or a degradation) brought on by hardware and
software changes to a datacenter storage system , without
physically changing hardware and software .

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE PRESENT DISCLOSURE

SUMMARY
[0005] According to one embodiment , a method of simu
lating a data center is provided . The method includes storing
at least one hardware configuration file and at least one
functional description file of a data center to be simulated in
a configuration file application ; generating a simulation
program of the data center by a DCEF application using the
at least one hardware configuration file and the at least one
functional description file ; and executing a flow - based simu
lation on the simulation program generated by the DCEF
application by a simulator .
[0006] A non - transitory computer - readable recording
medium having recorded thereon a computer program for
executing a method of simulating a data center is provided .
The method storing at least one hardware configuration file
and at least one functional description file of a data center to
be simulated in a configuration file application ; generating a
simulation program of the data center using the at least one
hardware configuration file and the at least one functional
description file by a data center storage evaluation frame
work (DCEF) application ; and executing a flow - based simu
lation on the simulation program generated by the DCEF
application by a simulator .

[0019] Hereinafter , embodiments of the present disclosure
are described in detail with reference to the accompanying
drawings . It should be noted that the same elements will be
designated by the same reference numerals although they are
shown in different drawings . In the following description ,
specific details such as detailed configurations and compo
nents are merely provided to assist with the overall under
standing of the embodiments of the present disclosure .
Therefore , it should be apparent to those skilled in the art
that various changes and modifications of the embodiments
described herein may be made without departing from the
scope of the present disclosure . In addition , descriptions of
well - known functions and constructions are omitted for
clarity and conciseness . The terms described below are
terms defined in consideration of the functions in the present
disclosure , and may be different according to users , inten
tions of the users , or customs . Therefore , the definitions of
the terms should be determined based on the contents
throughout this specification .
[0020] . The present disclosure may have various modifi
cations and various embodiments , among which embodi
ments are described below in detail with reference to the
accompanying drawings . However , it should be understood
that the present disclosure is not limited to the embodiments ,
but includes all modifications , equivalents , and alternatives
within the scope of the present disclosure .
[0021] Although the terms including an ordinal number
such as first , second , etc . may be used for describing various
elements , the structural elements are not restricted by the
terms . The terms are only used to distinguish one element
from another element . For example , without departing from
the scope of the present disclosure , a first structural element
may be referred to as a second structural element . Similarly ,
the second structural element may also be referred to as the

BRIEF DESCRIPTION OF THE DRAWINGS
10007] The above and other aspects , features , and advan
tages of certain embodiments of the present disclosure will

US 2019 / 0188023 A1 Jun . 20 , 2019

first structural element . As used herein , the term “ and / or ”
includes any and all combinations of one or more associated
items .
[0022] The terms used herein are merely used to describe
various embodiments of the present disclosure but are not
intended to limit the present disclosure . Singular forms are
intended to include plural forms unless the context clearly
indicates otherwise . In the present disclosure , it should be
understood that the terms “ include ” or “ have ” indicate
existence of a feature , a number , a step , an operation , a
structural element , parts , or a combination thereof , and do
not exclude the existence or probability of the addition of
one or more other features , numerals , steps , operations ,
structural elements , parts , or combinations thereof .
10023] Unless defined differently , all terms used herein
have the same meanings as those understood by a person
skilled in the art to which the present disclosure belongs .
Terms such as those defined in a generally used dictionary
are to be interpreted to have the same meanings as the
contextual meanings in the relevant field of art , and are not
to be interpreted to have ideal or excessively formal mean
ings unless clearly defined in the present disclosure .
[0024] The present disclosure concerns evaluating and
estimating performance changes (e . g . , an improvement or a
degradation) brought on by hardware and software changes
to a data center storage system without physically changing
hardware and software . Thus , a data center administrator
may easily address storage resource management and opti
mization issues in a data center that includes heterogeneous
storage media (e . g . , a solid state drive (SSD) and a hard disk
drive (HDD)) and complex network topologies .
[0025] According to one embodiment , a company may
evaluate a new or proposed installation of a data center
through flow - based simulation on a single machine without
to expend funds to physically install the data center .
[0026] According to one embodiment , the present disclo
sure is module - based , highly encapsulated , pluggable , and
scalable .
[0027] According to one embodiment , the present disclo
sure uses automatic programming to generate a simulator
program based on user hardware configuration description
files .
[0028] According to one embodiment , the present disclo
sure may conduct multiple types of performance evalua
tions , where a generated simulator reads workload samples
(e . g . , workload trace metadata) , simulates performance
using a flow - based methodology , and outputs numerous
performance metrics , such as input / output (1 / 0) perfor
mance , energy consumption , total cost of ownership (TCO) ,
a reliability audit , and availability .
[00291 According to one embodiment , the present disclo
sure includes a decision making assistant , where decisions
may be made by a system administrator or by the system
automatically for load balancing (including virtual machine
disk (VMDK) migration) , and reorganizing a topology of a
data center to improve performance , based on performance
evaluation results of different hardware configurations under
a certain workload pattern .
[0030] FIG . 1A is an illustration of a flow - based simula
tion and FIG . 1B is an illustration of an event - driven
simulation , according to one embodiment .
[0031] Referring to FIGS . 1A and 1B , current computer
system simulators may be categorized into two major
classes : timing simulators which may be either cycle - driven

or event - driven , and functional simulators . A cycle - driven
simulator is usually used to simulate low - level microarchi
tectures like a CPU or an electronic system , mainly for
timing / power measurements , which provides extremely
accurate results at the cost of very slow execution (1 - 1000
KIPS) .
100321 An event - driven simulator is usually used to simu
late high - level computer systems , where every possible
event in a system is described and precisely handled . An
event - drive simulator is much faster than a cycle - driven
simulator . The cycle - driven simulator and the event - driven
simulator can each simulate concurrency , but their rigid
implementation does not allow users to easily simulate
arbitrary computer systems . As a result , the cycle - driven
simulator and the event - driven simulator , by themselves ,
each lack of flexibility , which may require a long develop
ment time . On the other hand , while a functional simulator
may only requires a short development time , the functional
simulator , by itself , does not provide any information about
physical characteristics since the functional simulator is
merely used to verify functionality .
[0033] Many timing simulators use event - driven and
backward - looking models , and a memory element has a
history instead of a single value . Flow - based simulation
leverages the key insight that a complex algorithm may be
better understood when it is serialized . Thus , in contrast with
event - driven methods in which an invocation time of events
is sophisticated (e . g . , depends on many factors) , in a flow
based technique , event - driven methods are predictable
because of serial execution .
[0034] The goal of flow - based simulation is to let archi
tects measure the performance , energy consumption , and
functional verification by simulating only the functionality .
In a flow - based simulator , the content of every memory
element under simulation is bonded to time . Conceptually ,
time is a global floating point number which may increase or
decrease . Since the state of a system is also time - bonded , it
is possible to rollback a sequence of events after a call chain ,
which is referred to as a flashback .
[0035] In the present disclosure , a flow - based simulation
methodology is employed . That is , a flow is defined as a
sequence of events occurring successively which is triggered
by invoking a routine and ends when a program counter
returns from that routine . A routine is a piece of code that
describes the functionality of an element , which is referred
to as a block , in a system . Besides task functions , each block
has a latency / power component which is used for timing
energy evaluation . Ablock may receive a job and process the
job . In addition , a block may optionally produce other jobs
and send the produced jobs to a job queue , similar to an
event - driven simulation , but at a higher level .
[0036] Flow - based techniques rely on a call stack to
resemble buffering in hardware , so that a programmer need
not use a job queue very frequently . As shown in FIGS . 1A
and 1B , in the event - driven method of simulation , all blocks
dispatch events to invoke each other , while in the flow - based
method of simulation the blocks may call each other directly .
However , it is still possible to use a job queue to invoke a
block which is usually used by a block to call itself , which
is referred to as loopback . Flow - based simulation , addition
ally , enables fast development by compacting parts of a
simulated system into a single block depending on the level
of abstraction .

US 2019 / 0188023 A1 Jun . 20 , 2019

[0037] FIG . 2 is a block diagram of an architecture 200 of
data centers 201 , 203 , 205 , and 207 , according to one
embodiment .
0038] Referring to FIG . 2 , the architecture 200 may
include a first data center 201 , a second data center 203 , a
third data center 205 , a fourth data center 207 , and a global
network / Internet 209 . The first data center 201 , the second
data center 203 , the third data center 205 , the fourth data
center 207 are each connected to the global network / Internet
209 . While four data centers 201 , 203 , 205 , and 207 are
illustrated in FIG . 2 , the present disclosure is not limited
thereto . The architecture 200 may include any number of
data centers (e . g . , local networks) . A connection between a
data center 201 , 203 , 205 , and 207 and the global network /
Internet 209 may be a wireless connection , a wired connec
tions , or any combination thereof .
[0039] Each of the data centers 201 , 203 , 205 , and 207
may have multiple hosts (e . g . , physical host machines or
servers) as described in more detail below with reference to
FIG . 3 . A virtual machine (VM) and hypervisor (software)
may operate on a host machine . Multiple VMs may operate
on a hypervisor .
[0040] FIG . 3 is a block diagram of the data centers 201 ,
203 , 205 , and 207 of FIG . 2 , according to one embodiment .
[0041] Referring to FIG . 3 , each of the data centers 201 ,
203 , 205 , and 207 may include a first host machine 301 , a
second host machine 303 , a third host machine 305 , a fourth
host machine 307 , and a network switch 309 . The first host
machine 301 , the second host machine 303 , the third host
machine 305 , and the fourth host machine 307 are connected
to the network switch 309 . While four host machines 301 ,
303 , 305 , and 307 are illustrated in FIG . 3 , the present
disclosure is not limited thereto . The data centers 201 , 203 ,
205 , and 207 may include any number of host machines . A
connection between a host machine and the network switch
309 may be a wireless connection , a wired connections , or
any combination thereof .
[0042] Inside each host machine 301 , 303 , 305 , and 307 ,
different hardware devices may be included , such as a
central processing unit (CPU) , memory (dual in - line
memory module (DIMM) / nonvolatile DIMM (NVDIMM)) ,
HDD , SSD , network interface controller (NIC) , and inter
faces (e . g . , address / data (ADDR / DATA) bus , a peripheral
component interconnect (PCI) bus , a PCI express (PCI - e)
bus , a serial advanced technology attachment (SATA) bus ,
and an intelligent drive electronics (IDE) bus) .
[0043] FIG . 4 is a block diagram of the host machine 301 ,
303 , 305 , and 307 of FIG . 3 , according to one embodiment .
[0044] Referring to FIG . 4 , each of the host machines 301 ,
303 , 305 , and 307 may include an ADDR / DATA bus 401 , a
PCI bus 403 , a PCI - e bus 405 , a SATA bus 407 , an IDE bus
409 , a CPU 411 , a DIMM / NVDIMM 413 , an HDD 415 , an
SSD 417 , and a NIC 419 . The CPU 411 is connected to the
ADDR / DATA bus 401 , the PCI bus 403 , the PCI - e bus 405 ,
the SATA bus 407 , and the IDE bus 409 . The DIMM
NVDIMM 413 is connected to the ADDR / DATA bus 401 .
The HDD 415 is connected to the SATA bus 407 and the IDE
bus . The SSD 417 is connected to the PCI - e bus 405 , the
SATA bus 407 , and the IDE bus 409 . The NIC 419 is
connected to the PCI bus 403 and the PCI - e bus 405 . While
a certain configuration for the host machines 301 , 303 , 305 ,
and 307 is illustrated in FIG . 4 , the present disclosure is not
limited thereto , and other configurations are possible .

(0045] FIG . 5 is a block diagram of a DCEF workflow
application 500 , according to one embodiment .
[0046] Referring to FIG . 5 , the DCEF workflow applica
tion 500 may include a configuration file (config file)
application 501 , a DCEF application 503 , a simulator 505 ,
a workload trace application 507 , a replay application 509 ,
and an evaluation results application 511 . The configuration
file application 501 may provide different hardware and
software configuration files to the DCEF application 503 .
That is , the present disclosure allows for different types of
descriptions (e . g . , hardware descriptions and software / func
tional descriptions) at multiple levels of abstraction . The
DCEF application 503 generates a simulator using at least
one hardware configuration file and at least one functional
description file and provides it to the simulator 505 . The
DCEF application 503 builds models of components (in
cluding software) from a device pool , and assembles them to
build a simulator . Then , the workload trace application 507
provides a workload trace to the replay application 509 , and
the replay application 509 provides the workload trace to the
simulator 505 to be replayed to generate evaluation results .
The simulator 505 provides the evaluation results to the
evaluation results application 511 .
[0047] In an embodiment , a non - transitory computer - read
able recording medium having recorded thereon a computer
program for executing the method of simulating a data
center illustrated in FIG . 5 .
[0048] FIG . 6 is a block diagram of the DCEF application
503 of FIG . 5 , according to one embodiment .
[0049] Referring to FIG . 6 , the DCEF application 503 may
include a device pool application 601 and a flow simulator
(flowsim) application 603 . The device pool application 601
provides an output to the flow simulator application 603 ,
where the flow simulator application 603 receives a con
figuration file from the configuration file application 501 in
FIG . 5 , generates a simulation program using at least one
hardware configuration file and at least one functional
description file , and outputs the simulation program to the
simulator application 505 . The flow simulator application
603 uses the configuration file to determine which devices
from the device pool 601 to include in the simulation
program .
[0050] FIG . 7 is a flowchart of a method of simulating an
execution flow , according to one embodiment .
[0051] Referring to FIG . 7 , at 701 , a trace record is
selected and an initiator job is put into a job queue .
[0052] At 702 , it is determined if the job queue is empty .
If the job queue is not empty , the method proceeds to 703 .
If the job queue is empty , the method proceeds to 711 .
[0053] At 703 , a job is selected from the job queue and
provided to a simulator (e . g . , a flow - based simulator) to run
a simulation on the job . For example , trace records from a
trace file are provided one by one to the flow - based simu
lator , where the simulator produces corresponding jobs and
provides each job to a job distribution application of a
simulator (e . g . the simulator 505 in FIG . 5) described below
in greater detail . In an embodiment , the job distribution
application may be a job distribution application .
[0054] At 705 , the job distribution application starts a flow
for the job . That is , for each job in the job queue that is
provided to the job distribution application , the job distrib
uting application tries to start a flow .

US 2019 / 0188023 A1 Jun . 20 , 2019

embodiment , the device pool may include at least one of a
CPU 1003 , a DIMM / NVDIMM 1005 , a memory bus 1007 ,
an IDE 1009 , a network (NET) device 1011 , a SATA 1013 ,
a PCI 1015 , a PCI - e 1017 , an SSD 1019 , an HDD 1021 , a
NIC 1023 , a network switch 1025 , a workload (WL) device
1027 , an operating system (OS) 1029 , a file system 1031 ,
and a driver application 1033 . However , the device pool
application is not limited to these components , and other
components may be included .
[0068] A hardware description and programming language
(HDPL) for the present disclosure may be defined as fol
lows :

[0055] At 707 , a flow started by the job distribution
application is executed from its beginning . That is , for a flow
that is started , the flow returns to its beginning to be
executed .
[0056] At 709 , it is determined if a new trace is required .
If a new trace is not required , the method returns to 702 . If
a new trace is required , the method proceeds to 711 .
[0057] At 711 , it is determined if the end of the trace file
is reached . If the end of the trace file is not reached then the
method returns to 701 . If the end of the trace file is reached
then the method proceeds to 713 .
[0058] At 713 , an evaluation report is provided (e . g . ,
output , printed) . That is , when all of the jobs in the trace file
are finished , an evaluation report is provided .
[0059] FIG . 8 is a flowchart of a method 800 for job
distribution and execution , according to one embodiment .
Job distribution and execution is conducted in a simulator
(e . g . the simulator 505 in FIG . 5) .
[0060] Referring to FIG . 8 , the method 800 includes a
trace file application 801 , a trace fetch application 803 , a job
queue application 805 , a job distribution unit 807 , and a
device pool application 809 . The trace file application 801
provides an output to the trace fetch application 803 . The
trace fetch application 803 provides an output to the job
queue 805 and the job distribution application 807 . The job
queue application 805 and the device pool application 809
each provide an output to the job distribution application .
[0061] The method 800 executes the simulator generated
by the DCEF .
0062] FIG . 9 is a flowchart of the job distribution appli
cation 807 of FIG . 8 , according to one embodiment .
[0063] Referring to FIG . 9 , the job distribution application
807 includes a job decoder 901 , a runner application 903 ,
and a matcher application 905 . The job decoder 901 receives
an input from the job queue 805 of FIG . 8 and provides an
output to the runner application 903 and the matcher appli
cation 905 for providing inputs to the runner application 903
and flow IDs to the matcher application 905 . The runner
application 903 receives an input from the trace fetch
application 803 of FIG . 8 , and the matcher application 905
receives an input from the device pool application 809 in
FIG . 8 .
[0064] The job distributing application 807 receives a job
from the job queue application 805 and decodes the job in
the job decoder 901 to obtain the job ' s flow identifier (ID)
and metadata . Then , the flow ID is sent to a matcher
application 905 , and the matcher application 905 uses the
flow ID to look up corresponding device object descriptions
in the device pool application 809 . The device pool appli
cation 809 contains pointers to all object descriptions includ
ing both hardware and software components , and has infor
mation on all of the components of a system in a database .
[0065] The matcher application 905 looks up correspond
ing device object descriptions in the device pool application
809 . A device model is built from the device object descrip
tions , and a runner for the built device initializes and
operates the built device model . Additionally , one or more
new job (s) may be dispatched to the job queue if necessary .
The job queue application 805 may not empty if a hardware
device includes an endless loop to keep it active .
[0066] FIG . 10 is a block diagram of a device pool
application of FIGS . 6 and 8 , according to one embodiment .
[0067] Referring to FIG . 10 , the device pool application
includes at least a device flows and blocks 1001 . In an

n ER
v E Identifier
O E Operator
CE Class

PE Primitive Type
q E Type Qualifier
pe Parameter

n e Specification
m E Module : : = module m extends m ' { 7 }

d E Descriptor : : = pinipitolás
PE PortDe f : : = input T p [e] loutput T p [e] linout T p [e]

fe Field : : = f from e to e
ce Connection : : = P1 – P2P . ? P2P . HP2 P1 = P2 !

a E Architecture : : = r14
s E Slot : : = slot s (Tv) : T7 { W }

e E Exp : : = n | p | vlv [e] le Del (e) s (e) le @ f | null
re StoreElement : : = storage r [e] { r | Tv }
WE Pipline : : = pipeline W (Tv) { T }
TE Stage : : = stage T (Tv) when e

TE Type : : = C IP
YE PhysChar : : = wy (e)

W E Statement : : = (C + + Statement)
Iserial { @ }

Iconcurrent { W }
Ifire { }

[0069] In the HDPL , hardware description languages and
programming languages are merged . With the HDPL , a user
may describe a hardware device using a programming
language . An example HDPL may be an extension of C + +
for module description . The syntax is described above . Such
an HDPL enables a user to define a new hardware module
with a pipeline inside C + + code . Other programming lan
guage implementations are specifically envisioned .
[0070] An HDPL syntax template is as follows :

module < name > extends < base - module >

parameters :
< name > = < value > ;

specifications :
< name > = < value > ;

channels :
input < type > < port1 > [< size >] , Sports2 > [< size >] , . . . ,
output < type > < port1 > [< size >] , Sports2 > [< size >] , . . . ;
inout < type > < port1 > [< size >] , Sports2 > [< size >] , . . . ;

architecture :
storage < name > [< size >]

pipeline < name > [< size >] (. . .)
stage < name > . . .) when < perform cond > ;

submodule < name > (. . .) extends , base - module >

US 2019 / 0188023 A1 Jun . 20 , 2019

- continued

hist < type > < name > [< size >] ; / / variables with history
< type > < name > [< size >] ; / / regular variables

topology :
< input / inout > < output / inout > ;
< output / inout > > < input / inout > ;
< inout / inout > < ? < inout > ;
< input > = < input > < < output / inout > ;

fields :
< name > from < value > to < value > ;

implementation :
block < name > (. . .) ; < return type >
~ latency (. . .) ~ active _ power (. . .) ~ passive _ power (. . .)

block < input / inout port > (int index , < type > data)
~ latency (. . .) ~ active _ power (. . .) ~ passive _ power (. . .)

block < pipeline stage . . .)
- latency (. . .) ~ active _ power (. . .) ~ passive _ power (. . .)

fire < pipeline > [< index >] (. . .) ;
concurrent {

serial {

[0071] Template code for describing a generic module is
described above . The description may be for both hardware
and software modules . A flow - based simulation method and
design is used as a transpiler , which takes code in HDPL and
generates its equivalent C + + code to implement a flow
based simulation of a described system . A user need only
care about the functionality , and latency / power components
of each block (which may be an estimation) . The overall
timing measurement is conducted by the transpiler . A flow
based method is used to make the transformation from
HDPL to C + + easier , and make the cycle - accurate simula
tion faster . However , the present disclosure is not limited to
using only a flow - based method . Event - driven and cycle
driven methods may also be used . Only a functional simu
lation may be considered in a case where a user is only
interested in investigating functionality in a faster way .
[0072] A module description may include multiple scope
specifiers as follows :
[0073] A scope specifier “ parameters ” is used to param
etrize the module . A parameter may be used everywhere
throughout a module description . A parameter is similar to
a template class in C + + , but is more specialized in HDPL .
For example , a parameter may alter the functionality of a
module or alter a dimension of a member array .
[0074] A scope specifier " specifications ” is used to recon
figure a base - module , where the base module ' s parameters
may be modified using this scope specifier of an inheritor
module .
[0075] A scope specifier " channels ” is used to implement
a channel as a C + + class consisting of a set of access
functions and a buffer . A module may have three types of
channels to provide various conductivities : input , output ,
and inout .

10076] A scope specifier “ input ” is used to specify a
connection that can only be connected to an output channel
of another module . An input channel may be listened to ,
read , and flushed within the module description scope .
[0077] A scope specifier “ output ” is an output port that
may be connect to another module ' s input channel . The
output port may be connected to several input channels .
[0078] A scope specifier “ inout ” is a full - duplex channel
which may be read and written from both sides . An inout
may be connected only to another module ' s input , output ,
and inout channel .
[0079] A scope specifier " architecture ” contains architec
tural declarations of a module , which may include multiple
instances of objects , storage , pipeline , submodule , and vari
ables .
[0080] A scope specifier " storage ” describes a logical
structure of a storage space of a device , which may form an
access tree such as hdd . sector . page . line . The storage struc
ture is similar to a regular structure in C , but the storage
structure implements a complicated class which stores a
history of modifications inside a hash table with a tiering or
cutoff algorithm .
[0081] A scope specifier “ pipeline ” is a main description
of a module ' s functionality . A module performs its tasks in
one or more described pipelines . A pipeline includes a name
for referring to the pipeline , a dimension to enable a super
pipeline , and some possible inputs . To describe a pipeline ,
its stages should be listed inside the body of the pipeline .
Each stage is a function call which is described below with
reference to an “ implementation ” scope of a module . More
over , a pipeline may be conditional , which indicates that it
is possible to perform a pipeline stage only when a particular
condition exists .
[0082] A scope specifier " submodule ” is similar to defin
ing a new module , but a submodule is restricted to being
used only inside the submodule ' s parent module .
10083] A scope specifier “ variables " is similar to a C + +
class structure . It is possible to instantiate some variables ,
arrays , structures (or structs) , classes , and modules inside a
module . A variable may be declared by a “ hist ” specifier
which makes it time - bonded by assigning a history of
modifications to the variable . Such variables may be
accessed by using getter and setter methods . Notice that , hist
may also be used inside a storage structure .
[0084] A scope specifier “ topology ” is used to describe a
connectivity of submodules .
[0085] A scope specifier “ fields ” describes address fields .
A field may be used later in a format of addr @ field which
returns a particular bit - range of the address .
[0086] A scope specifier “ implementation ” describes all
function bodies . In addition , a pipeline stage may be used in
an architecture scope . A function is described in the form of
a block , which includes a name , a possible input vector , a
possible output type , physical characteristics such as latency
and power , and a function body . The body is C + + code with
some additional keywords for timing simulation : fire , wait ,
serial , and concurrent .
[0087] A scope specifier “ fire ” puts a job in a simulator job
queue for starting a pipeline .
[0088] A scope specifier “ wait " is used to call another
block and make a caller busy .
[0089] A scope specifier “ serial ” is a code block which
makes everything inside it run serially or sequentially .

US 2019 / 0188023 A1 Jun . 20 , 2019

f

[0090] A scope specifier “ concurrent ” is a code block
which makes everything inside it run concurrently .
[0091] An application of the present disclosure varies
based on the need . Overall , the simulator generates a com
plete report in terms of performance , energy , and reliability .
10092] The term “ performance ” indicates an estimation of
the performance of a whole system and a report of accurate
results of running a given workload of a data center . Per
formance may also include throughput , bandwidth , and total
execution time .
[0093] The term “ throughput ” reports a number of input /
output (I / O) operations per second (IOPS) for each part of a
system based on a user ' s requirement .
[0094] The term “ bandwidth ” is a report of an exact
bandwidth of devices including storage and networking
devices after a simulation is completed .
[0095] The term “ total execution time ” is an estimate of a
total execution time for each workload , which may be
helpful for estimating costs .
[0096] The term " energy ” is a complete report at the
completion of a simulation for energy consumption of each
physical device , as well as an estimate of a whole data
center .
[00971 . The term “ reliability ” indicates that a simulator
may receive a reliability model for each device and estimate
each device ' s life time , failure rate , drop rate , mean time to
failure , recovery , repair , mean time between failures , and
mean down time .
[0098] Based on the output reports , it is possible to cal
culate a total cost of ownership , availability , and several
other measurements and estimations .
[0099] Although certain embodiments of the present dis
closure have been described in the detailed description of the
present disclosure , the present disclosure may be modified in
various forms without departing from the scope of the
present disclosure . Thus , the scope of the present disclosure
shall not be determined merely based on the described
embodiments , but rather determined based on the accompa
nying claims and equivalents thereto .
What is claimed is :
1 . A method of simulating a data center , comprising :
storing at least one hardware configuration file and at least

one functional description file of a data center to be
simulated in a configuration file application ;

generating a simulation program of the data center using
the at least one hardware configuration file and the at
least one functional description file by a data center
storage evaluation framework (DCEF) application ; and

executing a flow - based simulation on the simulation pro
gram generated by the DCEF application by a simula
tor .

2 . The method of claim 1 , further comprising :
storing , in the DCEF application , models of a plurality of

devices from which the data center is constructed in a
device pool application ; and

generating , by a simulator program generator in the
DCEF application , the simulation program of the data
center .

3 . The method of claim 2 , wherein the plurality of devices
from which the data center is constructed includes a central
processing unit (CPU) , memory including a dual in - line
memory application (DIMM) / nonvolatile DIMM
(NVDIMM)) , a hard disk drive (HDD) , a solid state drive
(SSD) , a network interface controller (NIC) , a network

switch , an operating system , a workload application , a file
system , a driver , a device with flows and blocks , and
interfaces including an address / data (ADDR / DATA) bus , a
peripheral component interconnect (PCI) bus , a PCI express
(PCI - e) bus , serial advanced technology attachment (SATA)
bus , and an intelligent drive electronics (IDE) bus .

4 . The method of claim 1 , further comprising receiving ,
by the simulator , workload trace metadata and output per
formance metrics .

5 . The method of claim 4 , wherein the performance
metrics include at least one of input / output (I / O) perfor
mance , energy consumption , total cost of ownership (TCO) ,
reliability , and availability .

6 . The method of claim 5 , wherein I / O performance
includes throughput , bandwidth , and total execution time .

7 . The method of claim 4 , further comprising performing
load balancing and topology reorganization , by a decision
making application , to improve performance of the data
center based on the performance metrics .

8 . The method of claim 1 , further comprising :
storing trace records in a trace file application in the

simulator ;
fetching trace records , by a trace fetch application in the

simulator , one by one from the trace file application and
producing corresponding jobs ;

entering the corresponding jobs in a job queue ; and
initiating a flow and executing the flow from a beginning

of the flow by a job distribution application .
9 . The method of claim 8 , further comprising :
decoding a job to obtain a flow identifier (ID) and
metadata by a job decoder in the job distribution
application ;

initializing and operating the built data center by a runner
application in the job distribution application ; and

looking up corresponding device object descriptions in
the device pool application by a matcher application in
the job distribution application .

10 . The method of claim 1 , wherein the data center is
comprised of multiple host machines , wherein a host
machine is one of a virtual machine (VM) and a hypervisor .

11 . A non - transitory computer - readable recording
medium having recorded thereon a computer program for
executing a method of simulating a data center , the method
comprising :

storing at least one hardware configuration file and at least
one functional description file of a data center to be
simulated in a configuration file application ;

generating a simulation program of the data center using
the at least one hardware configuration file and the at
least one functional description file by a data center
storage evaluation framework (DCEF) application ; and

executing a flow - based simulation on the simulation pro
gram generated by the DCEF application by a simula
tor .

12 . The non - transitory computer - readable recording
medium of claim 11 , the computer program further com
prising :

storing , in the DCEF application , models of a plurality of
devices from which the data center is constructed in a
device pool application ; and

generating , by a simulator program generator in the
DCEF application , the simulation program of the data
center .

US 2019 / 0188023 A1 Jun . 20 , 2019

13 . The non - transitory computer - readable recording
medium of claim 12 , wherein the plurality of devices from
which the data center is constructed includes a central
processing unit (CPU) , memory including a dual in - line
memory application (DIMM) / nonvolatile DIMM
(NVDIMM)) , a hard disk drive (HDD) , a solid state drive
(SSD) , a network interface controller (NIC) , a network
switch , an operating system , a workload application , a file
system , a driver , a device with flows and blocks , and
interfaces including an address / data (ADDR / DATA) bus , a
peripheral component interconnect (PCI) bus , a PCI express
(PCI - e) bus , serial advanced technology attachment (SATA)
bus , and an intelligent drive electronics (IDE) bus .

14 . The non - transitory computer - readable recording
medium of claim 11 , the computer program further com
prising receiving , by the simulator , workload trace metadata
and output performance metrics .

15 . The non - transitory computer - readable recording
medium of claim 14 , wherein the performance metrics
include at least one of input / output (I / O) performance ,
energy consumption , total cost of ownership (TCO) , reli
ability , and availability .

16 . The non - transitory computer - readable recording
medium of claim 15 , wherein I / O performance includes
throughput , bandwidth , and total execution time .

17 . The non - transitory computer - readable recording
medium of claim 14 , further comprising performing load
balancing and topology reorganization , by a decision - mak

ing application , to improve performance of the data center
based on the performance metrics .

18 . The non - transitory computer - readable recording
medium of claim 11 , the computer program further com
prising :

storing trace records in a trace file application in the
simulator ;

fetching trace records , by a trace fetch application in the
simulator , one by one from the trace file application and
producing corresponding jobs ;

entering the corresponding jobs in a job queue ; and
initiating a flow and executing the flow from a beginning
of the flow by a job distribution application .

19 . The non - transitory computer - readable recording
medium of claim 18 , the computer program further com
prising :

decoding a job to obtain a flow identifier (ID) and
metadata by a job decoder in the job distribution
application ;

initializing and operating the built data center by a runner
application in the job distribution application ; and

looking up corresponding device object descriptions in
the device pool application by a matcher application in
the job distribution application .

20 . The non - transitory computer - readable recording
medium of claim 11 , wherein the data center is comprised of
multiple host machines , wherein a host machine is one of a
virtual machine (VM) and a hypervisor .

* * * * *

