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METHOD AND APPARATUS FOR ADAPTIVE 
CACHE LOAD BALANCING FOR 

SSD - BASED CLOUD COMPUTING STORAGE 
SYSTEM 

distribute the workload across one or more of a plurality of 
SSDs in a performance cache tier of a centralized multi - tier 
storage pool , based on the determined degree range . The 
processor distributes the workload across the one or more of 
the plurality of solid state devices based on the determined 
distribution strategy . PRIORITY 

[ 0001 ] This application claims priority under 35 U . S . C . $ 
119 ( e ) to a U . S . Provisional Patent Application filed on Dec . 
22 , 2017 in the United States Patent and Trademark Office 
and assigned Ser . No . 62 / 609 , 871 , the entire contents of 
which are incorporated herein by reference . 

FIELD 

[ 0002 ] The present disclosure relates generally to load 
balancing of a cloud computing storage system , and more 
particularly , to adaptive load balancing in a cache solid state 
device ( SSD ) tier of a multi - tier storage system based on the 
degree of a workload spike . 

BACKGROUND 
[ 0003 ] SSDs generally have an input / output ( 1 / 0 ) perfor 
mance that is orders of magnitude faster than that of tradi 
tional hard disk drives ( HDDs ) . In view of this difference in 
performance , SSDs are utilized as a performance cache tier 
in modern datacenter storage systems . These SSDs are 
intended to absorb hot datasets to reduce the long I / O 
response time that would occur if these I / Os were forwarded 
to low - end SSDs or even slower HDDs . 
[ 0004 ] Different applications have different workload 
characteristics . When such applications are used in coordi 
nation with modern datacenter storage systems ( e . g . , cloud 
computing storage systems ) , in order to satisfy peak use , 
efficient resource allocation schemes are required . However , 
traditional load balancers , such as , for example , random and 
greedy algorithms , neglect cases that involve a spike in 
workload , and experience significant performance degrada 

BRIEF DESCRIPTION OF THE DRAWINGS 
10007 ] . The above and other aspects , features , and advan 
tages of certain embodiments of the present disclosure will 
be more apparent from the following detailed description , 
taken in conjunction with the accompanying drawings , in 
which : 
[ 0008 ] FIG . 1 is a diagram illustrating a system architec 
ture that includes an adaptive cache load balancer ( ACLB ) , 
according to an embodiment of the present disclosure ; 
[ 0009 ] FIG . 2 is diagram illustrating an example of work 
load spike detection , according to an embodiment of the 
present disclosure ; 
10010 ] . FIG . 3 is flowchart illustrating a method for detect 
ing and compensating for a workload spike , according to an 
embodiment of the present disclosure ; 
[ 0011 ] FIG . 4 is a diagram illustrating the dispatching of 
jobs of an I / O stream based on the detected workload spike , 
according to an embodiment of the present disclosure ; 
[ 0012 ] FIG . 5 is a flowchart illustrating a method for 
adaptive cache load balancing , according to an embodiment 
of the present disclosure ; 
10013 ] FIG . 6 is a flowchart illustrating a method for 
selection of SSDs when a strong workload spike is detected , 
according to an embodiment of the present disclosure ; 
[ 00141 . FIG . 7 is a flowchart illustrating a method for 
selection of SSDs when there is no workload spike is 
detected , according to an embodiment of the present disclo 
sure ; and 
[ 0015 ] FIG . 8 is a block diagram illustrating an illustrative 
hardware implementation of a computing system , according 
to an embodiment of the present disclosure . 

tion . 

SUMMARY 
[ 0005 ] According to one embodiment , an apparatus is 
provided that includes a memory and a processor . The 
processor is configured to detect a degree of a change in a 
workload in an I / O stream received through a network from 
one or more user devices . The processor is also configured 
to determine a degree range , from a plurality of preset 
degree ranges , that the degree of the change in the workload 
is within . The processor is further configured to determine a 
distribution strategy , from among a plurality of distribution 
strategies , to distribute the workload across one or more of 
a plurality of SSDs in a performance cache tier of a 
centralized multi - tier storage pool , based on the determined 
degree range . Finally , the processor is configured to distrib 
ute the workload across the one or more of the plurality of 
solid state devices based on the determined distribution 
strategy . 
[ 0006 ] According to one embodiment , a method is pro 
vided in which a processor of an application server layer 
detects a degree of a change in a workload in an I / O stream 
received through a network from one or more user devices . 
The processor determines a degree range , from a plurality of 
preset degree ranges , that the degree of the change in the 
workload is within . The processor determines a distribution 
strategy , from among a plurality of distribution strategies , to 

DETAILED DESCRIPTION 
[ 0016 ] Hereinafter , embodiments of the present disclosure 
are described in detail with reference to the accompanying 
drawings . It should be noted that the same elements will be 
designated by the same reference numerals although they are 
shown in different drawings . In the following description , 
specific details such as detailed configurations and compo 
nents are merely provided to assist with the overall under 
standing of the embodiments of the present disclosure . 
Therefore , it should be apparent to those skilled in the art 
that various changes and modifications of the embodiments 
described herein may be made without departing from the 
scope of the present disclosure . In addition , descriptions of 
well - known functions and constructions are omitted for 
clarity and conciseness . The terms described below are 
terms defined in consideration of the functions in the present 
disclosure , and may be different according to users , inten 
tions of the users , or customs . Therefore , the definitions of 
the terms should be determined based on the contents 
described herein . 
( 0017 ] The present disclosure may have various modifi 
cations and various embodiments , among which embodi 
ments are described below in detail with reference to the 
accompanying drawings . However , it should be understood 
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that the present disclosure is not limited to the embodiments , 
but includes all modifications , equivalents , and alternatives 
within the scope of the present disclosure . 
[ 0018 ] Although the terms including an ordinal number 
such as first , second , etc . may be used for describing various 
elements , the structural elements are not restricted by the 
terms . The terms are only used to distinguish one element 
from another element . For example , without departing from 
the scope of the present disclosure , a first structural element 
may be referred to as a second structural element . Similarly , 
the second structural element may also be referred to as the 
first structural element . As used herein , the term “ and / or ” 
includes any and all combinations of one or more associated 
items . 
[ 0019 ] The terms used herein are merely used to describe 
various embodiments of the present disclosure but are not 
intended to limit the present disclosure . Singular forms are 
intended to include plural forms unless the context clearly 
indicates otherwise . In the present disclosure , it should be 
understood that the terms “ include ” or “ have ” indicate 
existence of a feature , a number , a step , an operation , a 
structural element , parts , or a combination thereof , and do 
not exclude the existence or probability of the addition of 
one or more other features , numerals , steps , operations , 
structural elements , parts , or combinations thereof . 
10020 ] Unless defined differently , all terms used herein 
have the same meanings as those understood by a person 
skilled in the art to which the present disclosure belongs . 
Terms such as those defined in a generally used dictionary 
are to be interpreted to have the same meanings as the 
contextual meanings in the relevant field of art , and are not 
to be interpreted to have ideal or excessively formal mean 
ings unless clearly defined in the present disclosure . 
[ 0021 ] An adaptive cache load balancer ( ACLB ) is 
described herein that utilizes a spike - aware algorithm to 
detect a workload change ( i . e . , I / O spike ) . In response to 
detecting the workload change , the ACLB adaptively uses 
different strategies to distribute the workload across SSDs in 
the performance cache tier to improve performance and 
extend the lifetimes of the SSDs . The distribution is per 
formed by balancing usage of one or more types of SSD 
resources , such as , for example , throughput , bandwidth , 
storage space , and a worn - out level ( i . e . , program / erase 
( P / E ) cycle usage ) . 
[ 0022 ] Referring initially to FIG . 1 , a diagram illustrates a 
system architecture that includes the ACLB , according to an 
embodiment of the present disclosure . Specifically , the sys 
tem architecture includes a cloud user layer 102 , an appli 
cation server layer 104 , and a centralized multi - tier storage 
pool 106 . 
0023 ] The cloud user layer 102 includes heterogeneous 
application users that send requests through their devices to 
the cloud through a network 103 . Each user may have a 
different request pattern resulting in differing temporal and 
spatial distributions of data . 
[ 0024 ] The application server layer 104 includes multiple 
physical virtual machine servers 108 - 1 , 108 - 2 , 108 - n , each 
of which includes one or more virtual machines ( VMs ) 
110 - 1 , 110 - 2 , 110 - n . 
[ 0025 ] VMs run the guest operating system ( OS ) and 
applications , and are isolated from each other . Cloud service 
vendors may " rent " these VMs to application service users . 
VMs may have different workload patterns based on user 
applications , and thus , they will have different levels of 

sensitivity to storage device speeds . A VM hypervisor 112 
hosts the one or more VMs 110 - 1 , 110 - 2 , 110 - n for a given 
physical server 108 - 1 . The VM hypervisor 112 is respon 
sible for scheduling , resource management , system software 
application programming interface ( API ) , and hardware 
virtualization . An ACLB daemon 114 is installed on the VM 
hypervisor 112 of each physical server 108 - 1 , and receives 
input from respective ACLB I / O filters 116 - 1 , 116 - 2 , 116 - n 
that correspond to each of the VMs 110 - 1 , 110 - 2 , 110 - n . 
[ 0026 ] The ACLB I / O filters 116 - 1 , 116 - 2 , 116 - n are 
responsible for collecting I / O - related statistics of every VM . 
The data may be collected at a sample period rate and the 
results may be sent to the ACLB Daemon 114 on the host 
system responsible for collecting all data from all VMs . 
[ 0027 ] The ACLB daemon 114 from each of the physical 
servers 108 - 1 , 108 - 2 , 108 - n communicates with a single 
ACLB controller 118 within the application server layer 
104 . The ACLB Daemon 114 tracks the workload change 
( e . g . , the I / O access pattern change ) of the physical server 
108 - 1 , and collects device runtime performance information 
from the ACLB controller 118 and the ACLB I / O filters 
116 - 1 , 116 - 2 , 116 - n . 
[ 0028 ] The ACLB may consist of the ACLB I / O filters 
116 - 1 , 116 - 2 , 116 - n , the ACLB daemons 114 , and the ACLB 
controller 118 . 
[ 0029 ] The ACLB controller ( or processor ) 118 may be 
running on a dedicated server or on an embedded system in 
the storage system . The ACLB controller 118 is responsible 
for making I / O allocation decisions . 
[ 0030 ] The physical servers 108 - 1 , 108 - 2 , 108 - n are con 
nected to the centralized multi - tier storage pool layer 106 
through fiber channels , or some other means , to share the 
backend SSD - HDD hybrid storage systems or all flash 
multiple tier SSD storage systems , which include , for 
example , non - volatile memory express ( NVMe SSDs , 3D 
cross point ( XPoint ) NVM SSDs , multi - level cell ( MLC ) / 
triple - level cell ( TLC ) / quad - level cell ( QLC ) SSDs , and 
traditional spinning HDDs . Each tier of the storage pool 106 
has different specialties , such as , for example , fast speed , 
large storage capacity , etc . The tiers include a cache SSD tier 
120 , a capacity SSD tier 122 , and a capacity HDD tier 124 . 
Embodiments of the present disclosure focus on load bal 
ancing of the workload in a top tier , which is usually the 
cache SSD tier 120 ( or performance cache tier ) consisting of 
the fastest and most expensive SSDs in the centralized 
multi - tier storage pool layer 106 . 
[ 0031 ] Herein , a multi - strategy load balancer provides 
different strategies under different workload spike scenarios . 
Performance cache tier SSD information is periodically 
retrieved , and based on workload spike detection results , 
different strategies are utilized for 1 / 0 stream allocation . 
Specifically , the performance cache tier SSD information is 
retrieved by calling a workload spike detection component . 
Based on the spike degree results , the ACLB categorizes a 
current I / O stream into one of three different ranges , and one 
of three different corresponding strategies is used to allocate 
the I / O stream . 
[ 0032 ] Herein , each individual I / O request is not consid 
ered since it is too fine - grained and expensive for conducting 
an optimization calculation . Instead , an I / O stream is con 
sidered , which is defined as a batch of I / O requests having 
the following proprieties : 

[ 0033 ] 1 . correlated with applications ( i . e . , from the 
same application ) ; 
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[ 0034 ] 2 . storing similar lifetime data into the same 
erase block and reducing write amplification ( garbage 
collection overhead ) , has locality patterns ; and 

[ 0035 ] 3 . all associated data invalidated at the same 
time ( e . g . , updated , trimmed , unmapped , deallocated , 
etc . ) . 

10036 ) . With multi - stream SSDs , I / O streams may be 
assigned by associating each application write thread opera 
tion with a stream , so that an I / O stream provides better 
endurance and improved performance . 
[ 0037 ] Workload spike detection methods are not limited 
strictly to those disclosed herein . However , in one example , 
an index of dispersion I is used to detect a workload spike 
in the incoming traffic . The advantage of utilizing the index 
of dispersion I is that it can qualitatively capture spikes in a 
single number , and thus , provide a simple yet powerful way 
to promptly identify the start and the end of a spike period . 
The mathematical definition of the index of dispersion I of 
a stochastic process is provided in Equation ( 1 ) below : 

( 1 ) 1 = scy [ 1 + c ACFW ) 
where SCV is the squared - coefficient of variation and ACF 
( k ) is the autocorrelation function at lag K . a is a knob to 
adjust the weight of the autocorrelation function ADF ( k ) . 
The joint presence of SCV and autocorrelations in the index 
of dispersion I is sufficient to discriminate traces with 
different spike intensities , and thus , to capture changes in 
user demands . 
0038 ] The index of dispersion I may only be based on one 

aspect , such as , for example , working volume , or may be 
based on multiple aspects , such as , for example , a compre 
hensive equation based on : 

[ 0039 ] 1 . working volume size ( WVS ) : the total amount 
of data ( in bytes ) accessed in the disk ; or 

[ 0040 ] 2 . working set size ( WSS ) : the total address 
range ( in bytes ) of accessed data , which is the unique 
set of WVS . A large working set covers more disk 
space . 

[ 0041 ] Additionally , the following factors may also be 
included in consideration of workload spike detection : 

[ 0042 ] 1 . read / write ratio ( RWR ) : the number of write 
I / Os divided by the total number of I / Os . 

[ 0043 ] 2 . sequential / random ratio ( SRR ) : the amount ( in 
bytes ) of total sequential I / Os ( both read and write ) 
divided by the total I / O amount ( in bytes ) . In general , 
SSDs have better performance under sequential I / Os 
than under random I / Os . 

[ 0044 ] FIG . 2 is a diagram illustrating an example of 
workload spike detection , according to an embodiment of 
the present disclosure . As shown , the diagram has an x - axis 
of time and a y - axis of index of dispersion I , which provides 
a degree of a detected workload spike . However , the y - axis 
may be any type of spike measurement value . The ACLB 
categorizes workload spike degrees into three ranges : strong 
spike ( Ps ) , weak spike ( Pw ) , and non - spike ( en ) , based on 
corresponding preset range thresholds . For example , [ 0 , 30 ] 
may be set as a non - spike range , [ 30 , 70 ] may be set as a 
weak spike range , and [ 70 , 100 ] may be set as a strong spike 
range . 

[ 0045 ] For cases involving the detection of both strong 
and weak spikes , The ACLB uses a join shortest queue 
( JSQ ) - based runtime random - greedy algorithm . Specifically , 
during runtime , ACLB selects the top K number of SSDs 
with the shortest queues , and conducts random allocation 
among these top K SSDs . For cases involving no spike 
detection , an optimization framework calculation is per 
formed . 
100461 Referring now to FIG . 3 , a flowchart illustrates a 
method for detecting and compensating for a workload 
spike , according to an embodiment of the present disclosure . 
A workload spike detector 302 is used to detect the existence 
and magnitude of a workload spike . The workload spike 
detector may detect a strong spike in block 304 , a weak spike 
in block 306 , or may not detect a spike in block 308 . If a 
strong spike is detected in block 304 , the JSQ - based runtime 
random - greedy algorithm 310 is used in accordance with a 
large range ( Kg ) of the idlest , or least busy SSDs , in block 
312 . If a weak spike is detected in block 306 , the JSQ - based 
runtime random - greedy algorithm 310 is used in accordance 
with a small range ( KZ ) of the idlest SSDs , in block 314 . If 
no spike is detected in block 308 , the optimization frame 
work calculation is performed , in block 316 . 
[ 0047 ] FIG . 4 is a diagram illustrating the dispatching of 
jobs of an I / O stream based on the workload spike , accord 
ing to an embodiment of the present disclosure . A dispatcher 
402 dispatches I / O streams from a dispatcher queue 404 to 
SSDs 406 . In detail , under the non - spike scenario , the ACLB 
selects the disk for the I / O based on the optimization 
framework . Under the strong spike scenario , the ACLB 
selects a large range ( Ky ) of the idlest SSDs and conducts 
random allocation among these selected SSDs for the I / O 
job . Under the weak spike scenario , the ACLB selects a 
small range ( KZ ) of the idlest SSDs and conducts random 
allocation among these selected SSDs for the I / O job . Full 
optimization take a greater amount of time and is therefore 
not suitable for spike cases . 
[ 0048 ] FIG . 5 is a flowchart illustrating a method for 
adaptive cache load balancing , according to an embodiment 
of the present disclosure . Upon determining to begin the 
methodology in steps 502 and 504 , it is determined , for each 
I / O stream , whether the current time is the beginning of an 
epoch , in step 506 . If the current time is the beginning of an 
epoch , load information from all SSDs is updated , in step 
508 . If time divided by epoch length results in a 0 remainder , 
it is the epoch boundary and new load data is obtained . 
Specifically , if it is the beginning of a new epoch , the ACLB 
will collect queue information from all SSDs by calling the 
function updateLoadInfo ( ) , in step 508 . If the current time 
is not the beginning of an epoch , the methodology proceeds 
directly to step 510 using the load data that was already 
obtained at the start of the current epoch . 
[ 0049 ] In step 510 , a degree of a detected workload spike 
is determined . In step 512 , it is determined whether the 
degree of the workload spike is within the strong spike range 
Ps . If the spike degree is within the strong spike range Ps , a 
JSQ - based runtime random - greedy algorithm is used in 
accordance with a large range ( K ) of the idlest SSDs , in 
step 514 . Referring back to the embodiment of FIG . 4 , the 
total number of available SSDs is 10 ( K = 10 ) . In cases 
involving the detection of a strong spike , the number of best 
SSD candidates Ky should be set close to ( or equal to ) the 
total number of available SSDs . As shown in FIG . 4 , Ky = 8 . 
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for an SSD based on each type of resource ( not limited to the 
four types described below ) , in step 708 . 
[ 0058 ] First , resources upon which load balance is con 
ducted are specified . Specifically , there are multiple types of 
resources that SSDs provide , such as : 

[ 0059 ] 1 . throughput ( P ) : unit in I / O request per second 
( IOPS ) ; 

[ 0060 ] 2 . bandwidth ( B ) : unit in bytes per second 
( BPS ) ; 

[ 0061 ] 3 . storage space ( S ) : unit in bytes , related to 
workload address space , or working set size ; and 

[ 0062 ] 4 . program / erase ( P / E ) life cycles ( L ) : each cell 
has limited lifetime , different workload patterns ( such 
as sequential ratio , read write ratio ) will have different 
write amplification on the SSD . 

10063 ) Ideally usage of all these resources would be 
balanced among the SSDs . Furthermore , to support both 
homogeneous and heterogeneous SSDs , a percentage format 
is utilized . More factors may also be included in the con 
sideration of load balancing . 
[ 0064 ] Second , it must be determined how to balance all 
resource utilization rates of all types of resources . CV is used 
to score a degree of balance for each type of average 
resource utilization rate , as set forth below in Equations ( 2 ) 
through ( 6 ) . 
min : 

Wp CV ( Util ( P ) ) + 08 : CV ( Util ( B ) ) + W , CVC 
Util ( S ) + wz CV ( Util ( L ) ) 

subject to : 

Util ( P ) E [ O , Pmax ] 

[ 0050 ] Specifically , in the JSQ - based runtime random 
greedy algorithm , the ACLB conducts random allocation 
among the top Kh SSDs . FIG . 6 is a flowchart illustrating a 
method for selection of SSDs when there is a strong work 
load spike , according to an embodiment of the present 
disclosure . After determining that the dispatcher queue is not 
empty and the current time is not the beginning of an epoch , 
in step 602 , the ACLB ascendingly sorts SSDs by the 
number of active I / O streams that are queued , randomly 
picks an SSD in the Ky idlest SSDs to assign the current job , 
and removes the job from the dispatcher queue 404 , in step 
604 . 
[ 0051 ] Since Ky is close to the total number of SSDs , 
ACLB has a behavior similar to a random assignment 
method , which allows the spike workload to be shared 
among a large number of top idlest SSDs , thereby alleviating 
the imbalance of load . 
[ 0052 ] Referring back to FIG . 5 , if it is determined in step 
512 that the spike degree is not within the strong spike range 
Ps , it is determined whether the spike degree is within the 
weak spike range pw , in step 516 . If it is determined that the 
spike degree is within the weak spike range pw , the JSQ 
based runtime random - greedy algorithm is used in accor - 
dance with a small range ( KZ ) of the idlest SSDs , in step 518 . 
This algorithm functions in the same manner as described in 
FIG . 6 , only using K , SSDs instead of Ky SSDs . When it is 
not the beginning of each epoch , the ACLB allocates the 
head I / O request from the dispatcher queue randomly to the 
top Kidlest SSDs . Once complete , the ACLB removes the 
I / O request from the dispatcher queue . 
[ 0053 ] In cases involving the detection of a weak spike , 
the number of best SSD candidates K , is set to a lower 
bound of the range . For example , as shown in FIG . 4 , K , = 3 . 
Also of note , if K , = 1 , ACLB performs exactly the same as 
the " greedy ” load balancer , which always selects the idlest 
SSD with the shortest queue length , and thus , achieves good 
performance in terms of waiting time . 
[ 0054 ] Referring back to FIG . 5 , if it is determined in step 
516 that the spike degree is not within the weak spike range 
Pw , it is determined whether the spike degree is within the 
non - spike range ( en ) , in step 520 . If it is determined that the 
spike degree is in the non - spike range ( en ) , a runtime 
optimization framework is performed over all K SSDs , in 
step 522 . If it is determined that the spike degree is not 
within the non - spike range ( Pn ) , the methodology returns to 
step 502 and repeats . 
[ 0055 ] FIG . 7 is a flowchart illustrating a method for 
selection of SSDs when no workload spike is detected , 
according to an embodiment of the present disclosure . 
Specifically , in cases involving no workload spike detection , 
the ACLB has time to conduct full optimization , in which 
strives to balance resources , such as , for example , through 
put , bandwidth , space , and a worn - out level . 
[ 0056 ] In step 702 of FIG . 7 , it is determined whether the 
queue is empty and whether the current time is the beginning 
of an epoch . When the queue is not empty and the current 
time is not the beginning of an epoch , job j is set to the head 
of the dispatcher queue , in step 704 . In step 706 it is 
determined whether the methodology has reached the end of 
the SSD list . If the methodology has reached the end of the 
SSD list , the methodology proceeds to step 716 . 
[ 0057 ] If the methodology has not reached the end of the 
SSD list , the ACLB calculates a coefficient variation ( CV ) 

Util ( B ) E [ 0 , Bmax ] 
Util ( S ) ELO , Smax ] 
Util ( L ) E [ 0 , Lmax ] 

10065 ) Each type of resource may have a different weight 
based on the environment preference , as reflected by ws : 
Pmax , B max , Smax , Lmax are preset upper bounds of a utili 
zation ratio for each type of resource . Average utilization can 
be in a monitoring window , or an exponentially weighted 
moving average ( EWMA ) window that averages the data in 
a way that gives less and less weight to data as they are 
further removed in time . 
10066 ) Accordingly , the ACLB is required to know the 
runtime usage information of the storage pool , such as , for 
example , throughput , bandwidth , storage , and P / E cycle . 
[ 0067 ] Throughput , bandwidth , and storage can be 
obtained by calling APIs of the hypervisor ( 112 of FIG . 1 ) . 
However , for the P / E cycle , SSD vendors usually do not 
provide APIs to allow users to check real physical write 
amount . Thus , the actual physical write amount is estimated 
to calculate the usage of the P / E cycle based on a history 
record of jobs dispatched from the job scheduler . This can be 
estimated by using write amplification function ( WAF ) 
models , as set forth in Equation ( 7 ) . 

p = nz•WA ( s , j ) 
where qp and are the physical and logical write amount 
( in bytes ) , respectively . The logical write is known from the 
application side . WA ( s , j ) is the write amplification function , 
which takes the SSD and new I / O stream to be assigned to 
this SSD , and then returns the write implication factor . 
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[ 0068 ] It may be costly to continuously pull the through 
put , bandwidth , and storage from a storage pool with a large 
number of SSDs . Therefore , information is periodically 
pulled . 
[ 0069 ] Referring back to FIG . 7 , in step 710 , it is deter 
mined whether CV returns a value of - 1 , which indicates 
that any one of the resources exceeds its corresponding 
resource upper bound . If a value of - 1 is returned for the CV , 
the SSD is skipped and a next SSD is selected in step 712 . 
If the resources do not exceed the resource upper bound , a 
result of the CV equation is added into a CV _ Rec vector that 
stores results of the equation , in step 714 , before selecting a 
next SSD , in step 712 , and returning to step 706 . The 
CV _ Rec vector is defined as < CV ( Util ( Resource Typel ) ) , 
CV ( Util ( ResourceType2 ) ) , CV ( Util ( ResourceType3 ) ) . . . > 
Upon determining the end of the SSD list , in step 706 , the 
ACLB picks the minimal CV result ( as also shown in 
Equation ( 2 ) ) and corresponding SSD for assignment of the 
job j , and also removes the job from the dispatcher queue , in 
step 716 . The methodology then returns to step 702 to 
repeat . 
[ 0070 ] Referring now to FIG . 8 , a block diagram illus 
trates an illustrative hardware implementation of a comput 
ing system in accordance with which one or more compo 
nents / methodologies of the disclosure ( e . g . , components / 
methodologies described in the context of FIGS . 1 - 7 ) may 
be implemented . As shown , the computer system may be 
implemented in accordance with a processor 810 , a memory 
812 , input / output ( I / O ) devices 814 , and a network interface 
816 , coupled via a computer bus 818 or alternate connection 
arrangement . 
[ 0071 ] It is to be appreciated that the term “ processor ” , as 
used herein , is intended to include any processing device , 
such as , for example , one that includes , but is not limited to , 
a central processing unit ( CPU ) and / or other processing 
circuitry . It is also to be understood that the term “ processor ” 
may refer to more than one processing device and that 
various elements associated with a processing device may be 
shared by other processing devices . 
[ 0072 ] The term “ memory ” , as used herein , is intended to 
include memory associated with a processor or CPU , such 
as , for example , random access memory ( RAM ) , read only 
memory ( ROM ) , a fixed memory device ( e . g . , hard drive ) , 
a removable memory device , and flash memory . 
[ 0073 ] In addition , the phrase " input / output devices ” or 
“ I / O devices ” , as used herein , is intended to include , for 
example , one or more input devices for entering information 
into the processor or processing unit , and / or one or more 
output devices for outputting information associated with 
the processing unit . 

[ 0074 ] Still further , the phrase " network interface ” , as 
used herein , is intended to include , for example , one or more 
transceivers to permit the computer system to communicate 
with another computer system via an appropriate commu 
nications protocol . This may provide access to other com 
puter systems . 
[ 0075 ] Software components , including instructions or 
code , for performing the methodologies described herein 
may be stored in one or more of the associated memory 
devices ( e . g . , ROM , fixed or removable memory ) and , when 
ready to be utilized , loaded in part or in whole ( e . g . , into 
RAM ) and executed by a CPU . 

[ 0076 ] The present disclosure may be utilized in conjunc 
tion with the manufacture of integrated circuits , which are 
considered part of the methods and apparatuses described 
herein . 
[ 0077 ] Embodiments of the present disclosure detect and 
predict workload change ( i . e . , I / O spike prediction ) , and 
provide three different strategies for different spike degrees 
to better balance the loads across SSDs to improve perfor 
mance and extend lifetime . Workload is balanced transpar 
ently to the user , VM I / O performance is improved , and SSD 
lifetime is extended . 
10078 ] Although certain embodiments of the present dis 
closure have been described in the detailed description of the 
present disclosure , the present disclosure may be modified in 
various forms without departing from the scope of the 
present disclosure . Thus , the scope of the present disclosure 
shall not be determined merely based on the described 
embodiments , but rather determined based on the accompa 
nying claims and equivalents thereto . 
What is claimed is : 
1 . An apparatus , comprising : 
a memory ; and 
a processor configured to : 

detect a degree of a change in a workload in an 
input / output stream received through a network from 
one or more user devices ; 

determine a degree range , from a plurality of preset 
degree ranges , that the degree of the change in the 
workload is within ; 

determine a distribution strategy , from among a plural 
ity of distribution strategies , to distribute the work 
load across one or more of a plurality of solid state 
devices ( SSDs ) in a performance cache tier of a 
centralized multi - tier storage pool , based on the 
determined degree range ; and 

distribute the workload across the one or more of the 
plurality of solid state devices based on the deter 
mined distribution strategy . 

2 . The apparatus of claim 1 , wherein each of the plurality 
of distribution strategies corresponds to a respective one of 
the plurality of preset degree ranges . 

3 . The apparatus of claim 2 , wherein the plurality of preset 
degree ranges comprises a strong workload spike range , a 
weak workload spike range , and a non - spike range . 

4 . The apparatus of claim 3 , wherein the plurality of 
distribution strategies comprises : 

a join shortest queue ( JSQ ) - based runtime random - greedy 
algorithm used in accordance with a large range of 
idlest SSDs from the plurality of SSDs , which corre 
sponds to the strong workload spike range ; 

a JSQ - based runtime random - greedy algorithm used in 
accordance with a small range of idlest SSDs from the 
plurality of SSDs , which corresponds to the weak 
workload spike range ; and 

an optimization framework calculation , which corre 
sponds to the non - spike range . 

5 . The apparatus of claim 4 , wherein , when the deter 
mined distribution strategy comprises the JSQ - based run 
time random - greed algorithm , the processor is further con 
figured to : 

sort the plurality of SSDs by a number of active I / O 
streams that are queued ; and 
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randomly select an SSD from the large range of idlest 
SSDs or the small range of idlest SSDs for assignment 
of a job of the workload . 

6 . The apparatus of claim 4 , wherein , when the deter 
mined distribution strategy comprises the optimization 
framework calculation , the processor is further configured 
to : 

calculate a coefficient variation for each of the plurality of 
SSDs using a plurality of resources ; 

determine whether any one of the plurality of resources 
exceeds a respective upper bound for each of the 
plurality of SSDs based on the respective coefficient 
variation ; 

skip assignment to a given SSD , when any one of the 
plurality of resources exceeds the respective upper 
bound ; and 

choose an SSD with a minimal coefficient variation result 
for assignment of a job of the workload . 

7 . The apparatus of claim 1 , wherein the degree of the 
change of the workload is calculated as an index of disper 
sion I : 

12 . The method of claim 11 , wherein the plurality of 
preset degree ranges comprises a strong workload spike 
range , a weak workload spike range , and a non - spike range . 

13 . The method of claim 12 , wherein the plurality of 
distribution strategies comprises : 

a join shortest queue ( ISO ) - based runtime random - greedy 
algorithm used in accordance with a large range of 
idlest SSDs from the plurality of SSDs , which corre 
sponds to the strong workload spike range ; 

a JSQ - based runtime random - greedy algorithm used in 
accordance with a small range of idlest SSDs from the 
plurality of SSDs , which corresponds to the weak 
workload spike range ; and 

an optimization framework calculation , which corre 
sponds to the non - spike range . 

14 . The method of claim 13 , wherein , when the deter 
mined distribution strategy comprises the JSQ - based run 
time random - greed algorithm , the processor is further con 
figured to : 

sort the plurality of SSDs by a number of active I / O 
streams that are queued ; and 

randomly select an SSD from the large range of idlest 
SSDs or the small range of idlest SSDs for assignment 
of a job of the workload . 

15 . The method of claim 13 , wherein , when the deter 
mined distribution strategy comprises the optimization 
framework calculation , further comprising : 

calculating a coefficient variation for each of the plurality 
of SSDs using a plurality of resources ; 

determining whether any one of the plurality of resources 
exceeds a respective upper bound for each of the 
plurality of SSDs based on the respective coefficient 
variation ; 

skipping assignment to a given SSD , when any one of the 
plurality of resources exceeds the respective upper 
bound ; and 

choosing an SSD with a minimal coefficient variation 
result for assignment of a job of the workload . 

16 . The method of claim 10 , wherein the degree of the 
change of the workload is calculated as an index of disper 
sion I : 

I = SCV ( 1 + a . . . ACF ( k ) 

ke [ k , Kmax ] 

where SCV is a squared coefficient of variation and ACF ( k ) 
is an autocorrelation function at lag K . 

8 . The apparatus of claim 1 , wherein the degree of the 
change of the workload is determined based on working 
volume , working volume size , or working set size . 

9 . The apparatus of claim 8 , wherein the degree of the 
change of the workload is further determined based on at 
least one of a read / write ratio and a sequential / random ratio . 

10 . A method , comprising : 
detecting , by a processor of an application server layer , a 

degree of a change in a workload in an input / output 
stream received through a network from one or more 
user devices ; 

determining , by the processor , a degree range , from a 
plurality of preset degree ranges , that the degree of the 
change in the workload is within ; 

determining , by the processor , a distribution strategy , 
from among a plurality of distribution strategies , to 
distribute the workload across one or more of a plu 
rality of solid state devices ( SSDs ) in a performance 
cache tier of a centralized multi - tier storage pool , based 
on the determined degree range ; and 

distributing , by the processor , the workload across the one 
or more of the plurality of solid state devices based on 
the determined distribution strategy . 

11 . The method of claim 10 , wherein each of the plurality 
of distribution strategies corresponds to a respective one of 
the plurality of preset degree ranges 

I = SCV ( 1 + a . 5 . ACF ( K ) 
ke [ k , Kmax ] 

where SCV is a squared coefficient of variation and ACF ( k ) 
is an autocorrelation function at lag K . 

17 . The method of claim 10 , wherein the degree of the 
change of the workload is determined based on working 
volume , working volume size , or working set size . 

18 . The method of claim 17 , wherein the degree of the 
change of the workload is further determined based on at 
least one of a read / write ratio and a sequential / random ratio . 


