
US 20190196969A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0196969 A1

YANG et al . (43) Pub . Date : Jun . 27 , 2019

(54) METHOD AND APPARATUS FOR ADAPTIVE
CACHE LOAD BALANCING FOR
SSD - BASED CLOUD COMPUTING STORAGE
SYSTEM

(52) U . S . CI .
CPC . . GO6F 12 / 0811 (2013 . 01) ; H04L 67 / 104

(2013 . 01) ; H04L 41 / 142 (2013 . 01) ; G06F
2212 / 608 (2013 . 01) ; G06F 2212 / 1024

(2013 . 01) ; G06F 2212 / 22 (2013 . 01) ; H04L
67 / 1097 (2013 . 01) (71) Applicant : Samsung Electronics Co . , Ltd . ,

Gyeonggi - do (KR)

(57) ABSTRACT (72) Inventors : Zhengyu YANG , Malden , MA (US) ;
Morteza HOSEINZADEH , La Jolla ,
CA (US) ; Thomas David EVANS , San
Marcos , CA (US) ; Clay MAYERS , San
Diego , CA (US) ; Thomas BOLT , San
Diego , CA (US)

(21) Appl . No . : 15 / 971 , 349

(22) Filed : May 4 , 2018
Related U . S . Application Data

(60) Provisional application No . 62 / 609 , 871 , filed on Dec .
22 , 2017

An apparatus , a method , a method of manufacturing an
apparatus , and a method of constructing an integrated circuit
are provided . A processor of an application server layer
detects a degree of a change in a workload in an input / output
stream received through a network from one or more user
devices . The processor determines a degree range , from a
plurality of preset degree ranges , that the degree of the
change in the workload is within . The processor determines
a distribution strategy , from among a plurality of distribution
strategies , to distribute the workload across one or more of
a plurality of solid state devices (SSDs) in a performance
cache tier of a centralized multi - tier storage pool , based on
the determined degree range . The processor distributes the
workload across the one or more of the plurality of solid
state devices based on the determined distribution strategy .

(51)
Publication Classification

Int . Cl .
G06F 12 / 0811 (2006 . 01)
H04L 29 / 08 (2006 . 01)
H04L 12 / 24 (2006 . 01)

Cloud ser

102

110 - 1 110 - 2 110 - 1 108 - 1 108 - 2 103 Vetwork 108 - 11
Servo VW Sve

1339
sore

Arbrennittee

112 116 - 1 116 - 2 116 - 1 114 118 Fiber Channels
120

Cucts SSD Tier h D 30

106
122

Caity SSO Ties

224
Czescity 3D T & S Woo Sin inte n s

Centralized Multi - tier Storage Poal W hen

Patent Application Publication Jun . 27 , 2019 Sheet 1 of 8 US 2019 / 0196969 A1

En DDA
102

104
110 - 1 110 - 2 110 - 1 108 - 1 108 - 2 103 Network 108 -

Vi Server ?

1393 * * * Supp
RAMOS

XOXOX XX

SACRO ater

112 116 - 1 116 - 2 1169 114
se XXL $ $ ssn . AS 120

Cxce SSD Tits

122 106

momen 124 w what
omen W

Centralized Multi - tier Storage Pool M .

FIG . 1

Patent Application Publication Jun . 27 , 2019 Sheet 2 of 8 US 2019 / 0196969 A1

* *

*

*

I / O Stream Number
- - -

www
-

*

*

" Meowwwwwwwwww *

* * *
- - - -

.

L VU LLLLLL No - spike Range
Time

FIG . 2

Patent Application Publication Jun . 27 , 2019 Sheet 3 of 8 US 2019 / 0196969 A1

www

Workload Spike Detector 302

Strong Spike Weak Spike Non - Spike

304 306 308
* YAYATO YATAY . AYATOSYAYATO YAYAYAYAYA . . AYAT . IVATATOAVAYATAYAYA

*

* * * * *

* *
*

*

* * * * Random Selecting
in Big Range (K) of

Idlest SSDs

Random Selecting
in Smal Range (Ki .)

of Idlest SSDs
. * * * *

* * * * *

Optimization
Framework

AV * . * . *

* * * * * + + + + + + + + + + +

312 Runtime Random - based Greedy 314 * * * * * * Runtime Optimal

310 316

FIG . 3 d

Patent Application Publication Jun . 27 , 2019 Sheet 4 of 8 US 2019 / 0196969 A1

SSD D IIIII

404
S TIILIT
SIIIIIIII | |
SRIIDIILID

* * * * * * * * * *

402

SIIIIIIIIIIII

406

FIG . 4

Patent Application Publication Jun . 27 , 2019 Sheet 5 of 8 US 2019 / 0196969 A1

502

504 - Home WWWWWWUUUUUUUUUUUUUUUUUU

512 - om spikeDegree e pse

514K KH

518 11111111111111111111111
520 mm

522
9 . SI
3345 * 25 Y W . 2 . .

FIG . 5

Patent Application Publication Jun . 27 , 2019 Sheet 6 of 8 US 2019 / 0196969 A1

dispatcherQueue tempty

604 YYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Yes
YTTELYTELLIT

* = = = = =

=

= = = = =

= = = = = =

jmslispatcherQueue . head ()
ascending Sort SSDs by quouing I / O strean number
allocateJobToSSD (_ random (K))
dispatcherQueue . remove () = = = = =

= = = = = =

=

FIG . 6

Patent Application Publication Jun . 27 , 2019 Sheet 7 of 8 US 2019 / 0196969 A1

702

ARALARINI

ttt

706 M

end of SSD list ?
- - -

708

next SSDS

712 - 4 CV Recis - CV

-
716 u allocateJobTossDC , argmin (CV Rec)) HHHHHHHH

- -

end

FIG . 7

Patent Application Publication Jun . 27 , 2019 Sheet 8 of 8 US 2019 / 0196969 A1

FIG . 8
812 814 816

ig

818

US 2019 / 0196969 A1 Jun . 27 , 2019

METHOD AND APPARATUS FOR ADAPTIVE
CACHE LOAD BALANCING FOR

SSD - BASED CLOUD COMPUTING STORAGE
SYSTEM

distribute the workload across one or more of a plurality of
SSDs in a performance cache tier of a centralized multi - tier
storage pool , based on the determined degree range . The
processor distributes the workload across the one or more of
the plurality of solid state devices based on the determined
distribution strategy . PRIORITY

[0001] This application claims priority under 35 U . S . C . $
119 (e) to a U . S . Provisional Patent Application filed on Dec .
22 , 2017 in the United States Patent and Trademark Office
and assigned Ser . No . 62 / 609 , 871 , the entire contents of
which are incorporated herein by reference .

FIELD

[0002] The present disclosure relates generally to load
balancing of a cloud computing storage system , and more
particularly , to adaptive load balancing in a cache solid state
device (SSD) tier of a multi - tier storage system based on the
degree of a workload spike .

BACKGROUND
[0003] SSDs generally have an input / output (1 / 0) perfor
mance that is orders of magnitude faster than that of tradi
tional hard disk drives (HDDs) . In view of this difference in
performance , SSDs are utilized as a performance cache tier
in modern datacenter storage systems . These SSDs are
intended to absorb hot datasets to reduce the long I / O
response time that would occur if these I / Os were forwarded
to low - end SSDs or even slower HDDs .
[0004] Different applications have different workload
characteristics . When such applications are used in coordi
nation with modern datacenter storage systems (e . g . , cloud
computing storage systems) , in order to satisfy peak use ,
efficient resource allocation schemes are required . However ,
traditional load balancers , such as , for example , random and
greedy algorithms , neglect cases that involve a spike in
workload , and experience significant performance degrada

BRIEF DESCRIPTION OF THE DRAWINGS
10007] . The above and other aspects , features , and advan
tages of certain embodiments of the present disclosure will
be more apparent from the following detailed description ,
taken in conjunction with the accompanying drawings , in
which :
[0008] FIG . 1 is a diagram illustrating a system architec
ture that includes an adaptive cache load balancer (ACLB) ,
according to an embodiment of the present disclosure ;
[0009] FIG . 2 is diagram illustrating an example of work
load spike detection , according to an embodiment of the
present disclosure ;
10010] . FIG . 3 is flowchart illustrating a method for detect
ing and compensating for a workload spike , according to an
embodiment of the present disclosure ;
[0011] FIG . 4 is a diagram illustrating the dispatching of
jobs of an I / O stream based on the detected workload spike ,
according to an embodiment of the present disclosure ;
[0012] FIG . 5 is a flowchart illustrating a method for
adaptive cache load balancing , according to an embodiment
of the present disclosure ;
10013] FIG . 6 is a flowchart illustrating a method for
selection of SSDs when a strong workload spike is detected ,
according to an embodiment of the present disclosure ;
[00141 . FIG . 7 is a flowchart illustrating a method for
selection of SSDs when there is no workload spike is
detected , according to an embodiment of the present disclo
sure ; and
[0015] FIG . 8 is a block diagram illustrating an illustrative
hardware implementation of a computing system , according
to an embodiment of the present disclosure .

tion .

SUMMARY
[0005] According to one embodiment , an apparatus is
provided that includes a memory and a processor . The
processor is configured to detect a degree of a change in a
workload in an I / O stream received through a network from
one or more user devices . The processor is also configured
to determine a degree range , from a plurality of preset
degree ranges , that the degree of the change in the workload
is within . The processor is further configured to determine a
distribution strategy , from among a plurality of distribution
strategies , to distribute the workload across one or more of
a plurality of SSDs in a performance cache tier of a
centralized multi - tier storage pool , based on the determined
degree range . Finally , the processor is configured to distrib
ute the workload across the one or more of the plurality of
solid state devices based on the determined distribution
strategy .
[0006] According to one embodiment , a method is pro
vided in which a processor of an application server layer
detects a degree of a change in a workload in an I / O stream
received through a network from one or more user devices .
The processor determines a degree range , from a plurality of
preset degree ranges , that the degree of the change in the
workload is within . The processor determines a distribution
strategy , from among a plurality of distribution strategies , to

DETAILED DESCRIPTION
[0016] Hereinafter , embodiments of the present disclosure
are described in detail with reference to the accompanying
drawings . It should be noted that the same elements will be
designated by the same reference numerals although they are
shown in different drawings . In the following description ,
specific details such as detailed configurations and compo
nents are merely provided to assist with the overall under
standing of the embodiments of the present disclosure .
Therefore , it should be apparent to those skilled in the art
that various changes and modifications of the embodiments
described herein may be made without departing from the
scope of the present disclosure . In addition , descriptions of
well - known functions and constructions are omitted for
clarity and conciseness . The terms described below are
terms defined in consideration of the functions in the present
disclosure , and may be different according to users , inten
tions of the users , or customs . Therefore , the definitions of
the terms should be determined based on the contents
described herein .
(0017] The present disclosure may have various modifi
cations and various embodiments , among which embodi
ments are described below in detail with reference to the
accompanying drawings . However , it should be understood

US 2019 / 0196969 A1 Jun . 27 , 2019

that the present disclosure is not limited to the embodiments ,
but includes all modifications , equivalents , and alternatives
within the scope of the present disclosure .
[0018] Although the terms including an ordinal number
such as first , second , etc . may be used for describing various
elements , the structural elements are not restricted by the
terms . The terms are only used to distinguish one element
from another element . For example , without departing from
the scope of the present disclosure , a first structural element
may be referred to as a second structural element . Similarly ,
the second structural element may also be referred to as the
first structural element . As used herein , the term “ and / or ”
includes any and all combinations of one or more associated
items .
[0019] The terms used herein are merely used to describe
various embodiments of the present disclosure but are not
intended to limit the present disclosure . Singular forms are
intended to include plural forms unless the context clearly
indicates otherwise . In the present disclosure , it should be
understood that the terms “ include ” or “ have ” indicate
existence of a feature , a number , a step , an operation , a
structural element , parts , or a combination thereof , and do
not exclude the existence or probability of the addition of
one or more other features , numerals , steps , operations ,
structural elements , parts , or combinations thereof .
10020] Unless defined differently , all terms used herein
have the same meanings as those understood by a person
skilled in the art to which the present disclosure belongs .
Terms such as those defined in a generally used dictionary
are to be interpreted to have the same meanings as the
contextual meanings in the relevant field of art , and are not
to be interpreted to have ideal or excessively formal mean
ings unless clearly defined in the present disclosure .
[0021] An adaptive cache load balancer (ACLB) is
described herein that utilizes a spike - aware algorithm to
detect a workload change (i . e . , I / O spike) . In response to
detecting the workload change , the ACLB adaptively uses
different strategies to distribute the workload across SSDs in
the performance cache tier to improve performance and
extend the lifetimes of the SSDs . The distribution is per
formed by balancing usage of one or more types of SSD
resources , such as , for example , throughput , bandwidth ,
storage space , and a worn - out level (i . e . , program / erase
(P / E) cycle usage) .
[0022] Referring initially to FIG . 1 , a diagram illustrates a
system architecture that includes the ACLB , according to an
embodiment of the present disclosure . Specifically , the sys
tem architecture includes a cloud user layer 102 , an appli
cation server layer 104 , and a centralized multi - tier storage
pool 106 .
0023] The cloud user layer 102 includes heterogeneous
application users that send requests through their devices to
the cloud through a network 103 . Each user may have a
different request pattern resulting in differing temporal and
spatial distributions of data .
[0024] The application server layer 104 includes multiple
physical virtual machine servers 108 - 1 , 108 - 2 , 108 - n , each
of which includes one or more virtual machines (VMs)
110 - 1 , 110 - 2 , 110 - n .
[0025] VMs run the guest operating system (OS) and
applications , and are isolated from each other . Cloud service
vendors may " rent " these VMs to application service users .
VMs may have different workload patterns based on user
applications , and thus , they will have different levels of

sensitivity to storage device speeds . A VM hypervisor 112
hosts the one or more VMs 110 - 1 , 110 - 2 , 110 - n for a given
physical server 108 - 1 . The VM hypervisor 112 is respon
sible for scheduling , resource management , system software
application programming interface (API) , and hardware
virtualization . An ACLB daemon 114 is installed on the VM
hypervisor 112 of each physical server 108 - 1 , and receives
input from respective ACLB I / O filters 116 - 1 , 116 - 2 , 116 - n
that correspond to each of the VMs 110 - 1 , 110 - 2 , 110 - n .
[0026] The ACLB I / O filters 116 - 1 , 116 - 2 , 116 - n are
responsible for collecting I / O - related statistics of every VM .
The data may be collected at a sample period rate and the
results may be sent to the ACLB Daemon 114 on the host
system responsible for collecting all data from all VMs .
[0027] The ACLB daemon 114 from each of the physical
servers 108 - 1 , 108 - 2 , 108 - n communicates with a single
ACLB controller 118 within the application server layer
104 . The ACLB Daemon 114 tracks the workload change
(e . g . , the I / O access pattern change) of the physical server
108 - 1 , and collects device runtime performance information
from the ACLB controller 118 and the ACLB I / O filters
116 - 1 , 116 - 2 , 116 - n .
[0028] The ACLB may consist of the ACLB I / O filters
116 - 1 , 116 - 2 , 116 - n , the ACLB daemons 114 , and the ACLB
controller 118 .
[0029] The ACLB controller (or processor) 118 may be
running on a dedicated server or on an embedded system in
the storage system . The ACLB controller 118 is responsible
for making I / O allocation decisions .
[0030] The physical servers 108 - 1 , 108 - 2 , 108 - n are con
nected to the centralized multi - tier storage pool layer 106
through fiber channels , or some other means , to share the
backend SSD - HDD hybrid storage systems or all flash
multiple tier SSD storage systems , which include , for
example , non - volatile memory express (NVMe SSDs , 3D
cross point (XPoint) NVM SSDs , multi - level cell (MLC) /
triple - level cell (TLC) / quad - level cell (QLC) SSDs , and
traditional spinning HDDs . Each tier of the storage pool 106
has different specialties , such as , for example , fast speed ,
large storage capacity , etc . The tiers include a cache SSD tier
120 , a capacity SSD tier 122 , and a capacity HDD tier 124 .
Embodiments of the present disclosure focus on load bal
ancing of the workload in a top tier , which is usually the
cache SSD tier 120 (or performance cache tier) consisting of
the fastest and most expensive SSDs in the centralized
multi - tier storage pool layer 106 .
[0031] Herein , a multi - strategy load balancer provides
different strategies under different workload spike scenarios .
Performance cache tier SSD information is periodically
retrieved , and based on workload spike detection results ,
different strategies are utilized for 1 / 0 stream allocation .
Specifically , the performance cache tier SSD information is
retrieved by calling a workload spike detection component .
Based on the spike degree results , the ACLB categorizes a
current I / O stream into one of three different ranges , and one
of three different corresponding strategies is used to allocate
the I / O stream .
[0032] Herein , each individual I / O request is not consid
ered since it is too fine - grained and expensive for conducting
an optimization calculation . Instead , an I / O stream is con
sidered , which is defined as a batch of I / O requests having
the following proprieties :

[0033] 1 . correlated with applications (i . e . , from the
same application) ;

US 2019 / 0196969 A1 Jun . 27 , 2019

[0034] 2 . storing similar lifetime data into the same
erase block and reducing write amplification (garbage
collection overhead) , has locality patterns ; and

[0035] 3 . all associated data invalidated at the same
time (e . g . , updated , trimmed , unmapped , deallocated ,
etc .) .

10036) . With multi - stream SSDs , I / O streams may be
assigned by associating each application write thread opera
tion with a stream , so that an I / O stream provides better
endurance and improved performance .
[0037] Workload spike detection methods are not limited
strictly to those disclosed herein . However , in one example ,
an index of dispersion I is used to detect a workload spike
in the incoming traffic . The advantage of utilizing the index
of dispersion I is that it can qualitatively capture spikes in a
single number , and thus , provide a simple yet powerful way
to promptly identify the start and the end of a spike period .
The mathematical definition of the index of dispersion I of
a stochastic process is provided in Equation (1) below :

(1) 1 = scy [1 + c ACFW)
where SCV is the squared - coefficient of variation and ACF
(k) is the autocorrelation function at lag K . a is a knob to
adjust the weight of the autocorrelation function ADF (k) .
The joint presence of SCV and autocorrelations in the index
of dispersion I is sufficient to discriminate traces with
different spike intensities , and thus , to capture changes in
user demands .
0038] The index of dispersion I may only be based on one

aspect , such as , for example , working volume , or may be
based on multiple aspects , such as , for example , a compre
hensive equation based on :

[0039] 1 . working volume size (WVS) : the total amount
of data (in bytes) accessed in the disk ; or

[0040] 2 . working set size (WSS) : the total address
range (in bytes) of accessed data , which is the unique
set of WVS . A large working set covers more disk
space .

[0041] Additionally , the following factors may also be
included in consideration of workload spike detection :

[0042] 1 . read / write ratio (RWR) : the number of write
I / Os divided by the total number of I / Os .

[0043] 2 . sequential / random ratio (SRR) : the amount (in
bytes) of total sequential I / Os (both read and write)
divided by the total I / O amount (in bytes) . In general ,
SSDs have better performance under sequential I / Os
than under random I / Os .

[0044] FIG . 2 is a diagram illustrating an example of
workload spike detection , according to an embodiment of
the present disclosure . As shown , the diagram has an x - axis
of time and a y - axis of index of dispersion I , which provides
a degree of a detected workload spike . However , the y - axis
may be any type of spike measurement value . The ACLB
categorizes workload spike degrees into three ranges : strong
spike (Ps) , weak spike (Pw) , and non - spike (en) , based on
corresponding preset range thresholds . For example , [0 , 30]
may be set as a non - spike range , [30 , 70] may be set as a
weak spike range , and [70 , 100] may be set as a strong spike
range .

[0045] For cases involving the detection of both strong
and weak spikes , The ACLB uses a join shortest queue
(JSQ) - based runtime random - greedy algorithm . Specifically ,
during runtime , ACLB selects the top K number of SSDs
with the shortest queues , and conducts random allocation
among these top K SSDs . For cases involving no spike
detection , an optimization framework calculation is per
formed .
100461 Referring now to FIG . 3 , a flowchart illustrates a
method for detecting and compensating for a workload
spike , according to an embodiment of the present disclosure .
A workload spike detector 302 is used to detect the existence
and magnitude of a workload spike . The workload spike
detector may detect a strong spike in block 304 , a weak spike
in block 306 , or may not detect a spike in block 308 . If a
strong spike is detected in block 304 , the JSQ - based runtime
random - greedy algorithm 310 is used in accordance with a
large range (Kg) of the idlest , or least busy SSDs , in block
312 . If a weak spike is detected in block 306 , the JSQ - based
runtime random - greedy algorithm 310 is used in accordance
with a small range (KZ) of the idlest SSDs , in block 314 . If
no spike is detected in block 308 , the optimization frame
work calculation is performed , in block 316 .
[0047] FIG . 4 is a diagram illustrating the dispatching of
jobs of an I / O stream based on the workload spike , accord
ing to an embodiment of the present disclosure . A dispatcher
402 dispatches I / O streams from a dispatcher queue 404 to
SSDs 406 . In detail , under the non - spike scenario , the ACLB
selects the disk for the I / O based on the optimization
framework . Under the strong spike scenario , the ACLB
selects a large range (Ky) of the idlest SSDs and conducts
random allocation among these selected SSDs for the I / O
job . Under the weak spike scenario , the ACLB selects a
small range (KZ) of the idlest SSDs and conducts random
allocation among these selected SSDs for the I / O job . Full
optimization take a greater amount of time and is therefore
not suitable for spike cases .
[0048] FIG . 5 is a flowchart illustrating a method for
adaptive cache load balancing , according to an embodiment
of the present disclosure . Upon determining to begin the
methodology in steps 502 and 504 , it is determined , for each
I / O stream , whether the current time is the beginning of an
epoch , in step 506 . If the current time is the beginning of an
epoch , load information from all SSDs is updated , in step
508 . If time divided by epoch length results in a 0 remainder ,
it is the epoch boundary and new load data is obtained .
Specifically , if it is the beginning of a new epoch , the ACLB
will collect queue information from all SSDs by calling the
function updateLoadInfo () , in step 508 . If the current time
is not the beginning of an epoch , the methodology proceeds
directly to step 510 using the load data that was already
obtained at the start of the current epoch .
[0049] In step 510 , a degree of a detected workload spike
is determined . In step 512 , it is determined whether the
degree of the workload spike is within the strong spike range
Ps . If the spike degree is within the strong spike range Ps , a
JSQ - based runtime random - greedy algorithm is used in
accordance with a large range (K) of the idlest SSDs , in
step 514 . Referring back to the embodiment of FIG . 4 , the
total number of available SSDs is 10 (K = 10) . In cases
involving the detection of a strong spike , the number of best
SSD candidates Ky should be set close to (or equal to) the
total number of available SSDs . As shown in FIG . 4 , Ky = 8 .

US 2019 / 0196969 A1 Jun . 27 , 2019

for an SSD based on each type of resource (not limited to the
four types described below) , in step 708 .
[0058] First , resources upon which load balance is con
ducted are specified . Specifically , there are multiple types of
resources that SSDs provide , such as :

[0059] 1 . throughput (P) : unit in I / O request per second
(IOPS) ;

[0060] 2 . bandwidth (B) : unit in bytes per second
(BPS) ;

[0061] 3 . storage space (S) : unit in bytes , related to
workload address space , or working set size ; and

[0062] 4 . program / erase (P / E) life cycles (L) : each cell
has limited lifetime , different workload patterns (such
as sequential ratio , read write ratio) will have different
write amplification on the SSD .

10063) Ideally usage of all these resources would be
balanced among the SSDs . Furthermore , to support both
homogeneous and heterogeneous SSDs , a percentage format
is utilized . More factors may also be included in the con
sideration of load balancing .
[0064] Second , it must be determined how to balance all
resource utilization rates of all types of resources . CV is used
to score a degree of balance for each type of average
resource utilization rate , as set forth below in Equations (2)
through (6) .
min :

Wp CV (Util (P)) + 08 : CV (Util (B)) + W , CVC
Util (S) + wz CV (Util (L))

subject to :

Util (P) E [O , Pmax]

[0050] Specifically , in the JSQ - based runtime random
greedy algorithm , the ACLB conducts random allocation
among the top Kh SSDs . FIG . 6 is a flowchart illustrating a
method for selection of SSDs when there is a strong work
load spike , according to an embodiment of the present
disclosure . After determining that the dispatcher queue is not
empty and the current time is not the beginning of an epoch ,
in step 602 , the ACLB ascendingly sorts SSDs by the
number of active I / O streams that are queued , randomly
picks an SSD in the Ky idlest SSDs to assign the current job ,
and removes the job from the dispatcher queue 404 , in step
604 .
[0051] Since Ky is close to the total number of SSDs ,
ACLB has a behavior similar to a random assignment
method , which allows the spike workload to be shared
among a large number of top idlest SSDs , thereby alleviating
the imbalance of load .
[0052] Referring back to FIG . 5 , if it is determined in step
512 that the spike degree is not within the strong spike range
Ps , it is determined whether the spike degree is within the
weak spike range pw , in step 516 . If it is determined that the
spike degree is within the weak spike range pw , the JSQ
based runtime random - greedy algorithm is used in accor -
dance with a small range (KZ) of the idlest SSDs , in step 518 .
This algorithm functions in the same manner as described in
FIG . 6 , only using K , SSDs instead of Ky SSDs . When it is
not the beginning of each epoch , the ACLB allocates the
head I / O request from the dispatcher queue randomly to the
top Kidlest SSDs . Once complete , the ACLB removes the
I / O request from the dispatcher queue .
[0053] In cases involving the detection of a weak spike ,
the number of best SSD candidates K , is set to a lower
bound of the range . For example , as shown in FIG . 4 , K , = 3 .
Also of note , if K , = 1 , ACLB performs exactly the same as
the " greedy ” load balancer , which always selects the idlest
SSD with the shortest queue length , and thus , achieves good
performance in terms of waiting time .
[0054] Referring back to FIG . 5 , if it is determined in step
516 that the spike degree is not within the weak spike range
Pw , it is determined whether the spike degree is within the
non - spike range (en) , in step 520 . If it is determined that the
spike degree is in the non - spike range (en) , a runtime
optimization framework is performed over all K SSDs , in
step 522 . If it is determined that the spike degree is not
within the non - spike range (Pn) , the methodology returns to
step 502 and repeats .
[0055] FIG . 7 is a flowchart illustrating a method for
selection of SSDs when no workload spike is detected ,
according to an embodiment of the present disclosure .
Specifically , in cases involving no workload spike detection ,
the ACLB has time to conduct full optimization , in which
strives to balance resources , such as , for example , through
put , bandwidth , space , and a worn - out level .
[0056] In step 702 of FIG . 7 , it is determined whether the
queue is empty and whether the current time is the beginning
of an epoch . When the queue is not empty and the current
time is not the beginning of an epoch , job j is set to the head
of the dispatcher queue , in step 704 . In step 706 it is
determined whether the methodology has reached the end of
the SSD list . If the methodology has reached the end of the
SSD list , the methodology proceeds to step 716 .
[0057] If the methodology has not reached the end of the
SSD list , the ACLB calculates a coefficient variation (CV)

Util (B) E [0 , Bmax]
Util (S) ELO , Smax]
Util (L) E [0 , Lmax]

10065) Each type of resource may have a different weight
based on the environment preference , as reflected by ws :
Pmax , B max , Smax , Lmax are preset upper bounds of a utili
zation ratio for each type of resource . Average utilization can
be in a monitoring window , or an exponentially weighted
moving average (EWMA) window that averages the data in
a way that gives less and less weight to data as they are
further removed in time .
10066) Accordingly , the ACLB is required to know the
runtime usage information of the storage pool , such as , for
example , throughput , bandwidth , storage , and P / E cycle .
[0067] Throughput , bandwidth , and storage can be
obtained by calling APIs of the hypervisor (112 of FIG . 1) .
However , for the P / E cycle , SSD vendors usually do not
provide APIs to allow users to check real physical write
amount . Thus , the actual physical write amount is estimated
to calculate the usage of the P / E cycle based on a history
record of jobs dispatched from the job scheduler . This can be
estimated by using write amplification function (WAF)
models , as set forth in Equation (7) .

p = nz•WA (s , j)
where qp and are the physical and logical write amount
(in bytes) , respectively . The logical write is known from the
application side . WA (s , j) is the write amplification function ,
which takes the SSD and new I / O stream to be assigned to
this SSD , and then returns the write implication factor .

US 2019 / 0196969 A1 Jun . 27 , 2019

[0068] It may be costly to continuously pull the through
put , bandwidth , and storage from a storage pool with a large
number of SSDs . Therefore , information is periodically
pulled .
[0069] Referring back to FIG . 7 , in step 710 , it is deter
mined whether CV returns a value of - 1 , which indicates
that any one of the resources exceeds its corresponding
resource upper bound . If a value of - 1 is returned for the CV ,
the SSD is skipped and a next SSD is selected in step 712 .
If the resources do not exceed the resource upper bound , a
result of the CV equation is added into a CV _ Rec vector that
stores results of the equation , in step 714 , before selecting a
next SSD , in step 712 , and returning to step 706 . The
CV _ Rec vector is defined as < CV (Util (Resource Typel)) ,
CV (Util (ResourceType2)) , CV (Util (ResourceType3)) . . . >
Upon determining the end of the SSD list , in step 706 , the
ACLB picks the minimal CV result (as also shown in
Equation (2)) and corresponding SSD for assignment of the
job j , and also removes the job from the dispatcher queue , in
step 716 . The methodology then returns to step 702 to
repeat .
[0070] Referring now to FIG . 8 , a block diagram illus
trates an illustrative hardware implementation of a comput
ing system in accordance with which one or more compo
nents / methodologies of the disclosure (e . g . , components /
methodologies described in the context of FIGS . 1 - 7) may
be implemented . As shown , the computer system may be
implemented in accordance with a processor 810 , a memory
812 , input / output (I / O) devices 814 , and a network interface
816 , coupled via a computer bus 818 or alternate connection
arrangement .
[0071] It is to be appreciated that the term “ processor ” , as
used herein , is intended to include any processing device ,
such as , for example , one that includes , but is not limited to ,
a central processing unit (CPU) and / or other processing
circuitry . It is also to be understood that the term “ processor ”
may refer to more than one processing device and that
various elements associated with a processing device may be
shared by other processing devices .
[0072] The term “ memory ” , as used herein , is intended to
include memory associated with a processor or CPU , such
as , for example , random access memory (RAM) , read only
memory (ROM) , a fixed memory device (e . g . , hard drive) ,
a removable memory device , and flash memory .
[0073] In addition , the phrase " input / output devices ” or
“ I / O devices ” , as used herein , is intended to include , for
example , one or more input devices for entering information
into the processor or processing unit , and / or one or more
output devices for outputting information associated with
the processing unit .

[0074] Still further , the phrase " network interface ” , as
used herein , is intended to include , for example , one or more
transceivers to permit the computer system to communicate
with another computer system via an appropriate commu
nications protocol . This may provide access to other com
puter systems .
[0075] Software components , including instructions or
code , for performing the methodologies described herein
may be stored in one or more of the associated memory
devices (e . g . , ROM , fixed or removable memory) and , when
ready to be utilized , loaded in part or in whole (e . g . , into
RAM) and executed by a CPU .

[0076] The present disclosure may be utilized in conjunc
tion with the manufacture of integrated circuits , which are
considered part of the methods and apparatuses described
herein .
[0077] Embodiments of the present disclosure detect and
predict workload change (i . e . , I / O spike prediction) , and
provide three different strategies for different spike degrees
to better balance the loads across SSDs to improve perfor
mance and extend lifetime . Workload is balanced transpar
ently to the user , VM I / O performance is improved , and SSD
lifetime is extended .
10078] Although certain embodiments of the present dis
closure have been described in the detailed description of the
present disclosure , the present disclosure may be modified in
various forms without departing from the scope of the
present disclosure . Thus , the scope of the present disclosure
shall not be determined merely based on the described
embodiments , but rather determined based on the accompa
nying claims and equivalents thereto .
What is claimed is :
1 . An apparatus , comprising :
a memory ; and
a processor configured to :

detect a degree of a change in a workload in an
input / output stream received through a network from
one or more user devices ;

determine a degree range , from a plurality of preset
degree ranges , that the degree of the change in the
workload is within ;

determine a distribution strategy , from among a plural
ity of distribution strategies , to distribute the work
load across one or more of a plurality of solid state
devices (SSDs) in a performance cache tier of a
centralized multi - tier storage pool , based on the
determined degree range ; and

distribute the workload across the one or more of the
plurality of solid state devices based on the deter
mined distribution strategy .

2 . The apparatus of claim 1 , wherein each of the plurality
of distribution strategies corresponds to a respective one of
the plurality of preset degree ranges .

3 . The apparatus of claim 2 , wherein the plurality of preset
degree ranges comprises a strong workload spike range , a
weak workload spike range , and a non - spike range .

4 . The apparatus of claim 3 , wherein the plurality of
distribution strategies comprises :

a join shortest queue (JSQ) - based runtime random - greedy
algorithm used in accordance with a large range of
idlest SSDs from the plurality of SSDs , which corre
sponds to the strong workload spike range ;

a JSQ - based runtime random - greedy algorithm used in
accordance with a small range of idlest SSDs from the
plurality of SSDs , which corresponds to the weak
workload spike range ; and

an optimization framework calculation , which corre
sponds to the non - spike range .

5 . The apparatus of claim 4 , wherein , when the deter
mined distribution strategy comprises the JSQ - based run
time random - greed algorithm , the processor is further con
figured to :

sort the plurality of SSDs by a number of active I / O
streams that are queued ; and

US 2019 / 0196969 A1 Jun . 27 , 2019

randomly select an SSD from the large range of idlest
SSDs or the small range of idlest SSDs for assignment
of a job of the workload .

6 . The apparatus of claim 4 , wherein , when the deter
mined distribution strategy comprises the optimization
framework calculation , the processor is further configured
to :

calculate a coefficient variation for each of the plurality of
SSDs using a plurality of resources ;

determine whether any one of the plurality of resources
exceeds a respective upper bound for each of the
plurality of SSDs based on the respective coefficient
variation ;

skip assignment to a given SSD , when any one of the
plurality of resources exceeds the respective upper
bound ; and

choose an SSD with a minimal coefficient variation result
for assignment of a job of the workload .

7 . The apparatus of claim 1 , wherein the degree of the
change of the workload is calculated as an index of disper
sion I :

12 . The method of claim 11 , wherein the plurality of
preset degree ranges comprises a strong workload spike
range , a weak workload spike range , and a non - spike range .

13 . The method of claim 12 , wherein the plurality of
distribution strategies comprises :

a join shortest queue (ISO) - based runtime random - greedy
algorithm used in accordance with a large range of
idlest SSDs from the plurality of SSDs , which corre
sponds to the strong workload spike range ;

a JSQ - based runtime random - greedy algorithm used in
accordance with a small range of idlest SSDs from the
plurality of SSDs , which corresponds to the weak
workload spike range ; and

an optimization framework calculation , which corre
sponds to the non - spike range .

14 . The method of claim 13 , wherein , when the deter
mined distribution strategy comprises the JSQ - based run
time random - greed algorithm , the processor is further con
figured to :

sort the plurality of SSDs by a number of active I / O
streams that are queued ; and

randomly select an SSD from the large range of idlest
SSDs or the small range of idlest SSDs for assignment
of a job of the workload .

15 . The method of claim 13 , wherein , when the deter
mined distribution strategy comprises the optimization
framework calculation , further comprising :

calculating a coefficient variation for each of the plurality
of SSDs using a plurality of resources ;

determining whether any one of the plurality of resources
exceeds a respective upper bound for each of the
plurality of SSDs based on the respective coefficient
variation ;

skipping assignment to a given SSD , when any one of the
plurality of resources exceeds the respective upper
bound ; and

choosing an SSD with a minimal coefficient variation
result for assignment of a job of the workload .

16 . The method of claim 10 , wherein the degree of the
change of the workload is calculated as an index of disper
sion I :

I = SCV (1 + a . . . ACF (k)

ke [k , Kmax]

where SCV is a squared coefficient of variation and ACF (k)
is an autocorrelation function at lag K .

8 . The apparatus of claim 1 , wherein the degree of the
change of the workload is determined based on working
volume , working volume size , or working set size .

9 . The apparatus of claim 8 , wherein the degree of the
change of the workload is further determined based on at
least one of a read / write ratio and a sequential / random ratio .

10 . A method , comprising :
detecting , by a processor of an application server layer , a

degree of a change in a workload in an input / output
stream received through a network from one or more
user devices ;

determining , by the processor , a degree range , from a
plurality of preset degree ranges , that the degree of the
change in the workload is within ;

determining , by the processor , a distribution strategy ,
from among a plurality of distribution strategies , to
distribute the workload across one or more of a plu
rality of solid state devices (SSDs) in a performance
cache tier of a centralized multi - tier storage pool , based
on the determined degree range ; and

distributing , by the processor , the workload across the one
or more of the plurality of solid state devices based on
the determined distribution strategy .

11 . The method of claim 10 , wherein each of the plurality
of distribution strategies corresponds to a respective one of
the plurality of preset degree ranges

I = SCV (1 + a . 5 . ACF (K)
ke [k , Kmax]

where SCV is a squared coefficient of variation and ACF (k)
is an autocorrelation function at lag K .

17 . The method of claim 10 , wherein the degree of the
change of the workload is determined based on working
volume , working volume size , or working set size .

18 . The method of claim 17 , wherein the degree of the
change of the workload is further determined based on at
least one of a read / write ratio and a sequential / random ratio .

