
c12) United States Patent
Yang et al.

(54) MEMORY DEVICE HAVING A
TRANSLATION LAYER WITH MULTIPLE
ASSOCIATIVE SECTORS

(71) Applicant: SAMSUNG ELECTRONICS CO.,
LTD., Suwon-si, Gyeonggi-do (KR)

(72) Inventors: Zhengyu Yang, Boston, MA (US); Sina
Bassani, Santa Cruz, CA (US); Manu
Awasthi, San Jose, CA (US)

(73) Assignee: Samsung Electronics Co., Ltd (KR)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 82 days.

(21) Appl. No.: 15/093,682

(22) Filed:

(65)

Apr. 7, 2016

Prior Publication Data

(60)

(51)

(52)

US 2017/0242583 Al Aug. 24, 2017

Related U.S. Application Data

Provisional application No. 62/297,011, filed on Feb.
18, 2016.

Int. Cl.
G06F 12/00
G06F 3/06
G06F 12/02
U.S. Cl.

(2006.01)
(2006.01)
(2006.01)

CPC G06F 3/061 (2013.01); G06F 3/064
(2013.01); G06F 3/0659 (2013.01); G06F

3/0679 (2013.01); G06F 12/0246 (2013.01);
G06F 2212/1016 (2013.01); G06F 2212/214

(2013.01); G06F 2212/7201 (2013.01)

Rece,ve a page 1.Q1.

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111
US009898200B2

(IO) Patent No.:
(45) Date of Patent:

US 9,898,200 B2
Feb.20,2018

(58) Field of Classification Search
CPC .. G06F 12/00; G06F 12/0238; G06F 12/0246;

G06F 3/0679
USPC .. 711/100, 103, 154
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,433,993 B2 10/2008 Sinclair
8,117,374 B2 2/2012 Kim et al.
8,161,265 B2 4/2012 Arimilli et al.

2007 /0067 573 Al * 3/2007 Bruening G06F 9/3851
711/125

2012/0072798 Al 3/2012 Unesaki et al.
2012/0317377 Al 12/2012 Palay et al.
2013/0036289 Al 2/2013 Welnicki et al.
2013/0159815 Al* 6/2013 Jung G06F 11/10

714/773
2013/0173954 Al* 7/2013 Woo G06F 11/167

714/6.13
2014/0006694 Al * 1/2014 Seo G06F 12/0246

711/103

(Continued)
Primary Examiner - Tuan Thai
(74) Attorney, Agent, or Firm - Innovation Counsel LLP

(57) ABSTRACT
A method for providing a memory translation layer includes:
receiving write request streams from a host computer;
selectively storing each write request stream into a sequen­
tial zone, a K-associative zone, and a random zone of log
blocks of a nonvolatile memory based on the characteristics.
A first group of the write request streams that are sequential
and start from a header page of a log block are stored in the
sequential zone. A second group of the write request streams
that are sequential but do not start from a header page of a
log block are stored in the K-associative zone. A third group
of the write request streams that are random are stored in the
random zone.

19 Claims, 4 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

US 9,898,200 B2
Page 2

2014/0101513 Al* 4/2014 Kim G06F 11/1004
714/758

2015/0199138 Al* 7/2015 Ramachandran G06F 12/122
711/103

2016/0011971 Al* 1/2016 Lee G06F 12/0246
711/103

* cited by examiner

A
pp

lic
at

io
n .1

Q
1§

I

A
pp

lic
at

io
n .1

Q
1_

Q

F
ile

 S
ys

te
m

 10
2

F
la

sh
 T
ra

ns
la

tio
n La

ye
r 1

10

A
dd

re
ss

 M
ap

pe
r ill

G
ar

ba
ge

 C
ol

le
ct

or
 11

2.

W
ea

r L
ev

el
er

 ill

S
tr

ea
m

 D
et

ec
to

r 11
4

F
la

sh
 M

em
or

y 1
20

F
IG

 .1

A
pp

lic
at

io
n 1

01
 n

/1
00

e • 00

• ~

~

~

~
 =

~

"f
'j

('
D

 ?'

N

'"
o

N

0 ...

.
Q

O

rJ
J =
­

('
D

('

D
 ...
.. ...
.

0 ...
.

.i;
...

d r.
,;

_

'"
'..

c
00

'..

c
00

'N

 =

=
 =

N

[
W

rit
e R

eq
ue

st
s 20

1

l
[

S
tr

ea
m

 D
et

ec
to

r 20
2

I

S
eq

ue
nt

ia
l st
re

am
 J l

S
eq

Z
on

e 2
11

K

Z
on

e 2
12

(b

lo
ck

-a
ss

oc
ia

tiv
e)

(K

-a
ss

oc
ia

tiv
e)

I
M

er
ge

 O
pe

ra
tio

n 2
15

i
D

at
a B

lo
ck

s 2
20

F
IG

 .2

l l

Lo
g B

lo
ck

s 2
10

R
nd

Z
on

e 2
13

(f

ul
ly

-a
ss

oc
ia

tiv
e)

I

e • 00

• ~

~

~

~
 =

~

"f
'j

('
D

 ?'

N

'"
o

N

0 ...

.
Q

O

rJ
J =
­

('
D

('

D
 ...
..

N

0 ...
.

.i;
...

d r.
,;

_

'"
'..

c
00

'..

c
00

'N

 =

=
 =

N

R
ec

en
cy

 T
ie

r 3
01

...

R
eo

rd
er

T

ai
l

L
PA

L

PA

...

C
ou

nt

C
ou

nt

U
pg

ra
de

F

re
qu

en
cy

T

ie
r 3

02

,.
T

ai
l

L
PA

L

PA

...

C
ou

nt

C
ou

nt

F
IG

 .3

20
2

I L
PA

L

PA

H
ea

d

C
ou

nt

C
ou

nt

L
PA

L

PA

H
ea

d

C
ou

nt

C
ou

nt

I I

e • 00

• ~

~

~

~
 =

~

"f
'j

('
D

 ?'

N

'"
o

N

0 ...

.
Q

O

rJ
'1

=

-
('

D

('
D

 ...
..

~

0 ...
.

.i;
...

d r.
,;

_

'"
'..

c
00

'..

c
00

'N

 =

=
 =

N

ye
s

S
w

itc
h m

er
ge

 40
5

A
dd

 th
e

ne
w

 pa
ge

 in
to

 a
ne

w

fr
ee

 lo
g b

lo
ck

40

6

S
w

itc
h m

er
ge

 or
 p

ar
tia

l
m

er
ge

 a
vi

ct
im

 bl
oc

k 4
11

A
dd

 th
e

ne
w

 pa
ge

 in
to

 a
ne

w

fr
ee

 lo
g

bl
oc

k 4
12

F
ul

l m
er

ge
 a
vi

ct
im

 bl
oc

k
w

ith
 th

e
ne

w
 pa

ge

40
7

no

ye
s

A
pp

en
d th

e p
ag

e i
n

K
Z

on
e

or
 F

ul
l M

er
ge

 th
e

lo
g b

lo
ck

w

ith
 th

e
ne

w
 pa

ge
 43

2

F
IG

 .4

A
dd

 th
e

pa
ge

 to
 K

Z
on

e 4
42

A
pp

en
d th

e
pa

ge
 to

 it
s

ow
ne

r's
 bl
oc

k in
 S

eq
Z

on
e o

r
F

ul
l M

er
ge

 th
e o

w
ne

r's
 bl
oc

k
ye

s I

w
ith

 th
e

ne
w

 pa
ge

no

42
2

A
dd

 th
e

pa
ge

 to
 R

nd
Z

on
e

44
3

e • 00

• ~

~

~

~
 =

~

"f
'j

('
D

 ?'

N

'"
o

N

0 ...

.
Q

O

rJ
J =
­

('
D

('

D
 ...
..

.i;
...

0 ...
.

.i;
...

d r.
,;

_

'"
'..

c
00

'..

c
00

'N

 =

=
 =

N

US 9,898,200 B2
1 2

MEMORY DEVICE HAVING A
TRANSLATION LAYER WITH MULTIPLE

ASSOCIATIVE SECTORS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims the benefits of and priority to U.S.

Abbreviations

NL
NK
Np
L

TABLE I-continued

List of S mbols

Description

Number of Log Blocks
Upper Bound of K
Number of Pages in a Block
Block "L"

Provisional Patent Application Ser. No. 62/297,011 filed
Feb. 18, 2016, the disclosure of which is incorporated herein 10

by reference in its entirety.

ILi
K(L)
X
BA
FA
KA

Number of Valid Pages in Block "L"
Associative Degree of Block "L"
An Unfixed Value
Block-Associative
Fully-Associative

TECHNICAL FIELD K-Associative

15
The present disclosure relates generally to memory sys- Data updates in a flash memory may incur invalid pages

in data blocks and eventually invoke a garbage collection in
the FTL. The garbage collection may lead to merge opera­
tions to reclaim the invalid pages. Since the merge opera-

tems for computers and, more particularly, to a memory
device having a translation layer including a stream detector.

BACKGROUND

The flash translation layer (FTL) is a software or firmware
layer implemented in a flash-based solid-state drive (SSD)
device that enables a flash memory to emulate certain
aspects of a hard disk drive. The FTL maintains a mapping
table in a memory (e.g., SRAM) of the SSD device that maps
a logical page address (LPA) of an input/output (I/0) request
received from a host computer to a physical page address
(PPA) of the SSD device. The FTL can evenly distribute
erasure requests to multiple flash blocks by wear leveling
and garbage collection to improve the performance and
lengthen the lifetime of the SSD.

I/0 traffic from a host computer to an SSD device can be
categorized as either random or sequential. Most workloads
have a combination of random and sequential streams
depending on a time window that an observation is made on.
Workloads whose I/0 operations are largely sequential and
access blocks have high spatial locality are classified as a
sequential workload or a sequential stream.

20 tions heavily affect the FTL performance, reducing the
number of merge operations is one of the main design
concerns for an FTL scheme.

In a log-structure-based FTL scheme, physical blocks of
an SSD device are logically partitioned into two groups: data

25 blocks and log blocks. When a write request arrives, the FTL
first writes the new data to a log block and invalidates the
data in the corresponding data block. Block-mapping infor­
mation for data blocks and page-mapping information for
log blocks are kept in the memory (e.g., RAM) of the SSD

30 device for performance purposes. When the log blocks are
full, the data in the log blocks are immediately flushed into
the data blocks and erased to free up the log blocks. More
specifically, the valid data in data blocks and the valid data
in the corresponding log block are merged and written to a

35
new clean data block. This process is referred to as a merge
operation. Merge operations can be classified into three
types: Full Merge (FM), Switch Merge (SM), and Partial
Merge (PM).

A switch merge is triggered when all pages of a victim
block (inside the log blocks) are sequentially updated from
the first logical page (header) to the last logical page (tail).
The FTL erases a data block filled with invalid pages and
switches the corresponding log block into the data block. A

In a typical flash-based storage use case, an operating
system of the host computer sends mixed random and 40

sequential streams to a solid-state drive (SSD) device
because memory transaction requests are generated from
multiple tenants or multiple applications. The SSD device
usually has no information about the incoming interleaved
sequential and random streams. The mixed random and
sequential streams may trigger many Full Merges (FMs) in

45 victim block refers to a log block in a log block area of the
SSD that is selected to be merged with its corresponding
data block in a data block area. a log-structure based FTL of an SSD, thereby increasing the

cost of operation and write amplification.
Table 1 summarizes the symbols and abbreviations used

in the present disclosure. 50

To perform a switch merge operation, all pages in a victim
block are required to be entirely filled and written in a
sequential order as the data block (i.e., in-place written from
the header to the tail of the block). When a new page comes

Abbreviations

FM
PM
SM
SLB
RLB
LBA
PBA
LPA
PPA
sz
KZ
RZ

TABLE 1

List of S mbols

Description

Full Merge
Partial Merge
Switch Merge
Sequential Log Block
Random Log block
Logical Block Address
Physical Block Address
Logical Page Address
Physical Page Address
Sequential Buffer Zone
K-associative Sequential Buffer Zone
Random Buffer Zone

to the same log block, the FTL triggers the log block to
switch (replace) with the corresponding data block and
erases the data block. Switch Merge does not involve any

55 data copy, so the copy time for a switch merge is 0. The erase
time for a switch merge is 1. Switch Merge is the cheapest
merge operation among Switch Merge, Partial Merge, and
Full Merge.

60
A partial merge is similar to a switch merge except for

requiring a copy of one or more valid pages from a data
block to a log block (victim block) in a log block area. After
the one or more valid pages are copied to the log block, the
FTL erases the data block, mark the log block as the data

65 block, and assign a new empty block from an empty block
list (EmptyB!ockList) to the log block area. The FTL
performs a partial merge when the log block is written from

US 9,898,200 B2
3

a header to a middle page in the block that is not the tail (i.e.,
in-place written but the block is not filled from the header to
the tail of the block).

4
separates the log blocks into a sequential log block (SLB)
(block associative) and random log blocks (RLBs) (fully
associative). The separation of the log blocks into the SLB
and RLBs may help to resolve the thrashing issues. FAST To perform a partial merge operation, a new incoming

page should belong to the same log block (i.e., owner of the
new incoming page) and be the header of the log block. The
FTL copies all the remaining valid pages from the corre­
sponding data block to this log block and erases the data
block. The FTL does not write the new incoming header
page to the log block because the programmed header page
in that log block cannot be rewritten. Instead, the FTL marks
this log block as the data block, similar to the switch merge,
and assigns a new empty block from the EmptyB!ockList to
the log block area. Lastly, the FTL writes the new incoming
header page to the newly assigned block. The copy time for
a partial merge is determined by the difference between the
number of pages in a block and the number of valid pages
in the same block (Np-ILi), and the erase time for a partial
merge is 1, which is the same as the erase time for a switch
merge. Although the block-erase time is far greater than a
page-copy time, the page-copy time of a partial merge
cannot be ignored since the accumulated multiple page-copy
time can be significant.

5 optimizes the merge operations and introduces the partial
merge. However, FAST cannot handle more than one
sequential stream of requests. In addition, the way FAST
determines sequentiality is whether or not a page is a header
of a block; (although it is a necessary condition for SM or

10 PM), it cannot cover all sequential cases. It is noted that
"whether the workload is sequential or not" and "whether
the write stream is starting from a block header" are two
different conditions. FAST simply uses the former condition
to determine the latter condition. Finally, in terms of cost

15 evaluation, in FAST, full merges need to search for more
than one data blocks, slowing down the merge operation.

LAST employs an access detector to detect whether a
request is sequential or random, based on the write request
size (e.g., threshold=4 KB). Multiple SLBs and RLBs are

A full merge requires the largest overhead among the
three merge operations. The FTL allocates a clean block
from the EmptyB!ockList and copies all the valid pages
from either the data block or the log block into the clean
block. After all the valid pages are copied, the clean block
becomes the data block, both the former data block and the
log block are erased, and a new empty block will be assigned
to the log block area from the EmptyB!ockList. Therefore,
a single full merge operation requires as many read and write
operations as the number of valid pages in a block, plus two

20 good for multiple streams. LAST can trigger a switch merge
for a log block. A large write has a relatively high sequential
locality (but not always). LAST also separates random log
blocks into hot and cold regions to reduce the cost of a full
merge However, LAST that dynamically changes request

25 streams may impose severe restrictions on the utility of this
scheme to efficiently adapt to various workload patterns.

KAST controls the maximum log block associativity to
control the worst-case blocking time and increase the per­
formance. In KAST, write requests are distributed among

30 different log blocks, including multiple sequential log
blocks. KAST automatically partitions between sequential
and random log blocks. However, KAST requires the user to
configure the K-associativity, which makes the scheme less

erase operations.
In a full merge, if a log block of the SSD is not written 35

sequentially from the first page to the last page, the FTL
copies valid pages from the log block and its corresponding
data block to a newly allocated data block and erases the log
block and its corresponding data blocks. The copy time for

stable and reliable.
Table 2 shows the comparison of block numbers of

different associative degrees (e.g., block-associative BA,
fully-associative FA, and K-associative KA) and types of
merges supported by the FTL mapping schemes. These FTL
mapping schemes use one or two associativities as indicated

a full merge is determined by the product of the associativity
of block L and the number of pages in the block, i.e.,
K(L)xNp, and the erase time for a full merge is determined
by K(L)+l, where K(L) is for external associated data
blocks, and 1 is for the victim log block.

40 in Table 2. For example, BAST uses only block-associative,
FAST and LAST use only block-associative and fully­
associative, and KAST uses only fully-associative and K-as­
sociative. Table 2 also shows the number of different asso-

There exist several FTL mapping schemes. Examples of 45

such FTL mapping schemes include, but are not limited to,
Block Associative Sector Translation (BAST), Fully-Asso­
ciative Sector Translation (FAST), Locality-Aware Sector
Translation (LAST), and K-associative Sector Translation
(KAST). Each of these FTL mapping schemes has advan- 50

tages and disadvantages compared to other FTL mapping
schemes.

BAST uses multiple log blocks to cache incoming write
requests. Once every page in a log block is written, the log
block replaces the corresponding data block. In this sense, 55

BAST is referred to as a block associated dedicated trans­
lation. While FAST, LAST, and KAST can support all of the
full merge, the partial merge, and the switch merge, BAST
can support only the full merge and the switch merge. BAST
may save cost for the switch merge. When intensive non- 60

sequential overwrites for one hot block, or lots of (greater
than the number of log blocks in the log block area) blocks
occur during a given time window (e.g., cross-block thrash­
ing), BAST can result in increased write operations.

FAST allocates a log block to more than one data blocks 65

to increase the utilization of log blocks. To capture sequen­
tial writing streams from a mixed stream of requests, FAST

ciative blocks in different FTL schemes.

FTL

Schemes

BAST
FAST
LAST
KAST

TABLE 2

Comparison of FTL schemes

Block Number
of Different Associative

BA FA KA

NL 0 0
1 NL-) 0
X NL-) 0
0 X NL-X

SUMMARY

Merges

FM, SM
FM, PM, SM
FM, PM, SM
FM, PM, SM

According to one embodiment, a method includes: receiv­
ing write request streams from a host computer, wherein
each write stream includes one or more write requests to
write data to log blocks of a nonvolatile memory and the one
or more write requests are addressed in a logical page
address (LPA); dividing log blocks of the nonvolatile
memory into a sequential zone, a K-associative zone, and a

US 9,898,200 B2
5

random zone; detecting characteristics of the each write
request stream and determining whether the each write
request stream is either a sequential write stream that is
addressed to a page of a log block in a sequential order or
a random write stream that is addressed to a page of a log
block in a random order; and selectively storing the each
write request stream into one of the sequential zone, the
K-associative zone, and the random zone of the log blocks

6
The figures are not necessarily drawn to scale and ele­

ments of similar structures or functions are generally rep­
resented by like reference numerals for illustrative purposes
throughout the figures. The figures are only intended to

5 facilitate the description of the various embodiments
described herein. The figures do not describe every aspect of
the teachings disclosed herein and do not limit the scope of
the claims.

of the nonvolatile memory based on the characteristics of the
each write request stream. A first group of the write request 10

streams that are sequential and start from a header page of
DETAILED DESCRIPTION

a log block are stored in the sequential zone. A second group Each of the features and teachings disclosed herein can be
of the write request streams that are sequential but do not
start from a header page of a log block are stored in the
K-associative zone. A third group of the write request 15

streams that are random are stored in the random zone.

utilized separately or in conjunction with other features and
teachings to provide a memory translation layer including a
stream detector. Representative examples utilizing many of
these additional features and teachings, both separately and

According to another embodiment, a memory device
includes: memory translation layer; a non-volatile memory
including log blocks and data blocks, wherein the log blocks
are divided into a first zone, a second zone, and a third zone,
and a stream detector. The stream detector is configured to:
receive write request streams from a host computer, wherein
each write stream includes one or more write requests to
write data to log blocks of a nonvolatile memory and the one
or more write requests are addressed in a logical page
address (LPA); detect characteristics of the each write
request stream and determining whether the each write
request stream is either a sequential write stream that is
addressed to a page of a log block in a sequential order or

in combination, are described in further detail with reference
to the attached figures. This detailed description is merely
intended to teach a person of skill in the art further details

20 for practicing aspects of the present teachings and is not
intended to limit the scope of the claims. Therefore, com­
binations of features disclosed above in the detailed descrip­
tion may not be necessary to practice the teachings in the
broadest sense, and are instead taught merely to describe

25 particularly representative examples of the present teach-
ings.

In the description below, for purposes of explanation only,

a random write stream that is addressed to a page of a log 30

block in a random order; and selectively store the each write
request stream into one of the first zone, the second zone,
and the third zone of the log blocks based on the charac­
teristics of the each write request stream. A first group of the
write request streams that are sequential and start from a 35

header page of a log block are stored in the first zone. A
second group of the write request streams that are sequential
but do not start from a header page of a log block are stored

specific nomenclature is set forth to provide a thorough
understanding of the present disclosure. However, it will be
apparent to one skilled in the art that these specific details
are not required to practice the teachings of the present
disclosure.

Some portions of the detailed descriptions herein are
presented in terms of algorithms and symbolic representa­
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are used
by those skilled in the data processing arts to effectively
convey the substance of their work to others skilled in the
art. An algorithm is here, and generally, conceived to be a in the second zone. A third group of the write request streams

that are random are stored in the third zone.
The above and other preferred features, including various

novel details of implementation and combination of events,
will now be more particularly described with reference to
the accompanying figures and pointed out in the claims. It
will be understood that the particular systems and methods
described herein are shown by way of illustration only and
not as limitations. As will be understood by those skilled in
the art, the principles and features described herein may be
employed in various and numerous embodiments without
departing from the scope of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included as part

40 self-consistent sequence of steps leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,

45 and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

It should be borne in mind, however, that all of these and
50 similar terms are to be associated with the appropriate

physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the below discussion, it is appreciated that

of the present specification, illustrate the presently preferred 55

embodiment and together with the general description given
above and the detailed description of the preferred embodi­
ment given below serve to explain and teach the principles
described herein.

throughout the description, discussions utilizing terms such
as "processing," "computing," "calculating," "determining,"
"displaying," or the like, refer to the action and processes of
a computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's regis-

FIG. 1 shows an architecture of an example flash memory
system, according to one embodiment;

FIG. 2 shows an architecture of an example FTL, accord­
ing to one embodiment;

FIG. 3 shows a data structure of an example stream
detector, according to one embodiment; and

FIG. 4 is an example flowchart for classifying a new page
into one of the three zones, according to one embodiment.

60 ters and memories into other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage, transmission or
display devices.

The algorithms presented herein are not inherently related
65 to any particular computer or other apparatus. Various

general-purpose systems, computer servers, or personal
computers may be used with programs in accordance with

US 9,898,200 B2
7

the teachings herein, or it may prove convenient to construct
a more specialized apparatus to perform the required method
steps. The required structure for a variety of these systems
will appear from the description below. It will be appreciated
that a variety of programming languages may be used to 5

implement the teachings of the disclosure as described
herein.

8
clean page and updating the corresponding data on that page,
and mapping the LPA into a new physical page address
(PPA). The mapping between the LPA and PPA can be
maintained at a page level, a block level, or a combination
of both (hybrid scheme). The stream detector 114 can detect
whether the page is from a sequential stream or not.

The garbage collector 112 can erase garbage blocks with
invalid and/or stale data of the flash memory 120 for
conversion into a writable state. The wear leveler 113 can
arrange data stored in the flash memory so that erasures and
re-writes are distributed across the storage medium of the
flash memory 120 to prolong a service life of the flash
memory 120. In this way, no single erase block prematurely
fails due to a high concentration of write cycles. There are
various wear leveling mechanisms used in flash memory
systems, each with varying levels of flash memory longevity
enhancement.

FIG. 2 shows an architecture of an example FTL, accord­
ing to one embodiment. A stream detector 202 qualifies each

Moreover, the various features of the representative
examples and the dependent claims may be combined in
ways that are not specifically and explicitly enumerated in 10

order to provide additional useful embodiments of the
present teachings. It is also expressly noted that all value
ranges or indications of groups of entities disclose every
possible intermediate value or intermediate entity for the
purpose of an original disclosure, as well as for the purpose 15

of restricting the claimed subject matter. It is also expressly
noted that the dimensions and the shapes of the components
shown in the figures are designed to help to understand how
the present teachings are practiced, but not intended to limit
the dimensions and the shapes shown in the examples.

The present disclosure provides a flash translation layer
(FTL). The present FTL can be considered as a stream
filter-assisted, log buffer-based multiple-associative sector
translation (SLMAST) FTL. The present FTL divides the
SSD into a data block area and a log block area. The log 25

block area refers to a virtual group of blocks in the SSD used

20 write request 201 (in LPA) and can send the write requests
201 to one of three zones of the log blocks 210 including a
sequential zone (SeqZone) 211, a K-associative zone
(KZone) 212, and a random zone (RndZone) 213. Specifi-

as a log cache. The log block area can be further divided into
three zones (or sectors) to isolate sequential and random
write streams from mixed write streams including both
random and sequential write streams. Random and sequen- 30

tial write streams are classified based on their temporal and
spatial localities. A sequential write stream refers to a group
of workloads addressed to pages or block in the SSD in a
sequential order. Conversely, a random write stream refers to
a group of workloads addressed to pages or block in the SSD 35

in a random order. Moreover, the present FTL employs a
new stream detector that can capture sequential streams
from mixed write streams. By separating sequential and
random streams, the present FTL can perform switch merges
and partial merges as much as possible instead of costly full 40

merges.
The present FTL defines an associative degree K(L)

(associative of block L) as a number of associated blocks in
the data blocks that the pages in block L belong to. Lower
associative degree K(L) indicates the better performance 45

because the amount of full merges can be reduced. The
present FTL can separate sequential and random streams,
and perform switch merges and partial merges as much as
possible instead of costly full merges. To achieve that, the
present FTL first divides the log block of the SSD into three 50

zones to isolate random and sequential writes.
FIG. 1 shows an architecture of an example flash memory

system, according to one embodiment. The flash memory
system 100 includes a file system 102, a flash translation
layer 110, and a flash memory 120. The file system 102 of 55

the flash memory system 100 can receive various requests
from applications lOla-lOln running on a host computer
(not shown). The file system 102 can send the requests to the
flash translation layer 110 for performing various tasks
including some tasks that are specific to the flash memory 60

120.
The flash translation layer 110 can include an address

mapper 111, a garbage collector 112, a wear leveler 113, and
a stream detector 114. The address mapper 111 is in charge
of address translation and block assigmnent. The flash 65

translation layer 110 emulates in-place updates for a data
page in a logical page address (LPA) by first acquiring a

cally, sequential streams are in-part classified based on their
starting point in the streams; the sequential streams starting
from the header are sent to the SeqZone 211, and other
sequential streams not starting from the header are sent to
the KZone 212. Random streams are sent to the RndZone
213. The FTL can perform one or more merge operations
215 (e.g., switch merge, partial merge, and full merge) using
the streamed data contained in the SeqZone 211, the KZone
212, and the RndZone 213. The data merged are stored in the
data blocks 220.

FIG. 3 shows a data structure of an example stream
detector, according to one embodiment. The stream detector
220 can be stored in the memory (e.g., SRAM) of an SSD.
In one embodiment, the stream detector 220 can have two
tiers including a Recency Tier (RT) 301 and a Frequency
Tier (FT) 302. Each of the RT 301 and the FT 302 can store
a linked list of nodes. Each node of the linked list in the RT
301 and the FT 302 can contain an LPA and a count.

Algorithm 1 is pseudocode of an example procedure to
update a record of the stream detector 220. This pseudocode
is not intended to be compiled, or even to represent any
particular programming language. Instead, it is simply
intended to illustrate and describe the workings of the
algorithm, which may be implemented in any of a variety of
programming languages.

The stream detector 202 stores recent records of writes
request streams in the RT 301. An input is the LPA of a new
incoming page's metadata, and the stream detector investi­
gates the I/0 localities without caring about the page content
value. When the stream detector 220 receives a new page in
a write request, the stream detector 220 looks up queues of
the previous (or several previous within a certain distance)
LPA(s) in the RT 301 and the FT 302. If a node that matches
with the new page is found in a queue either in the RT 301
or in the FT 302, the stream detector 220 places the node in
the head of the queue. This process is referred to as "reor­
dering". The LPA of that node is then updated with the LPA
of new page, and the counter of the node is incremented by
one. If no match is found, the stream detector 220 can insert
a new node to the RT 301. The LPA of the new node is set
as the page's LPA, and the count of the new node is set as
one (indicating a new node).

Once the counter of a node reaches a certain preset
threshold, the stream detector 220 can update the node to the

US 9,898,200 B2
9

next queue. For example, the node can be removed from the
current queue and added to the head of the next queue, as
shown in line 15 of Algorithm 1. This process is referred to
as "upgrading." The threshold of a node upgrade is configu­
rable and can dynamically change. The larger the threshold

10
SeqZone 211 is aimed to perform switch merge and partial
merge, and the RndZone 213 is aimed to perform full merge.
The KZone 212, however, is aimed to perform low-cost full
merge as will be explained in further detail below. Table 3

5 shows the characteristics of these zones, where "[1, ND]"
means 1 sK(L)sN D· is, the harder the qualifying condition of an upgrade for a

node. Only pages from the associated blocks in the FT 302
are considered as a part of a sequential stream. To distin­
guish the new incoming page's LPA and the LPA in each
node, "NodeName.addr" is used to represent the LPAofthat 10

node (e.g., Algorithm 1. line 4).
Asso­
ciative
Type

TABLE 3

Zone configuration

Asso­
ciativity
Degree

2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21

Algorithm 1: updateStreamRecord (LPA):

P RrRT.search(LPA-1)
P FrFT.search(LPA-1)
if PRr!-Nil

PRT·add~LPA
PRT·count++
moveToTail(PRrl

elif PFT!-Nil
Ppr.add~LPA

else

P FT· count++
moveToTail(Ppr)

PN.addr-LPA
PN.count-1
RT.addToTail(PN.) /* add the page to RT */
FT.addToTail(RT.remove(checkUpgrade(RT)) /* upgrade one
qualified node to FT if have * /
if len(RT)> LRT

RT.evictHead()
if len(FT)> LFT

FT.evictHead()
end if

end if

Def: RT= Recency Tier, FT= Frequency Tier, LRT = RT's max size, Lpr = FT's max size.

Algorithm 2 is pseudocode of an example procedure to
detect sequential streams. This pseudocode is not intended to
be compiled, or even to represent any particular program­
ming language. Instead, it is simply intended to illustrate and
describe the workings of the algorithm, which may be
implemented in any of a variety of programming languages.
For an input of a new page's LPA), seqStreamDetect()
checks whether the LPA is in all the associated data blocks

Aimed
Zone K (L) Purpose Write Merge

15 SeqZone Block- Sequential in-place SM or PM
asso- (start from
ciative header) I/Os

KZone K- NK Sequential out-of- Low
asso- (not start from place (controllable)
ciative header) I/Os cost FM

20 RndZone Fully- [1, Nn] Random I/Os out-of- FM
asso- place
ciative

The present flash translation layer 110 has multiple
25 sequential log blocks that can capture multiple sequential

streams at the same time without thrashing each other and
triggering many full merges. A page that is a header of a
block can be inserted into a block in the SeqZone 211. A
Block-associative in-place write policy is enforced in the

30 SeqZone 211 to be able to perform more switch merges and
partial merges instead of full merges.

The KZone 212 is assigned to capture as many sequential
streams as possible. However, not all sequential streams start
from the first page of each LBA, therefore the present flash

35 translation layer 110 cannot simply perform in-place-writes
for these non-header pages due to physical limitations:
within a block, the pages must be programmed consecu­
tively from the least significant bit (LSB) page of the block
to the most significant bit (MSB) pages of the block, and

40 random page address programming is prohibited. Therefore,
to save those sequential streams that do not starting from the
header, the present flash translation layer 110 conducts
out-of-place writes in the KZone 212. In some cases, full

of recorded streams in the FT 302, as shown in line of
Algorithm 2. If yes, seqStreamDetect() can return true, else 45

return false.

merges cannot be changed to switch merges or partial
merges. Even in these cases, the present flash translation
layer 110 can still reduce the associative degree, thereby
reducing the cost and the write amplification factor. The
associativity degree in the KZone 212 will be higher than
SeqZone 211 but less than the fully associative RndZone

2
3
4
5
6
7

Algorithm 2: seqStreamDetect (LPA):

for each node in the FT
if node.addr - count + 1 ,; LPA ,; node.addr

return True
else

50 213. In some embodiments, the present translation layer 110
can impose the limitation on the maximum associativity. In
the KZone 212, the present flash translation layer 110 can
conduct lower cost full merges.

After header qualifying and stream detector qualifying for return False
end if

end for
55 sequentiality, all other remaining new pages are buffered in

the RndZone 213. The associative degree K(L) of the fully
associative blocks in the RndZone 213 can be from 1 and
ND. Out-of-place writes are buffered in the RndZone 213 for According to one embodiment, the stream detector 220

can perform log block area partitioning. As discussed with
reference to FIG. 2, the log blocks are partitioned into three 60

zones: SeqZone (block associative) 211, KZone CK-associa­
tive) 212 and the RndZone (fully associative) 213. The
associativity degree K(L) of the SeqZone 211 and the KZone
212 are 1 and Nk, respectively. The associativity degree K(L)
of the RndZone 213 is any number between 1 and ND. The 65

SeqZone 211 can handle in-place writes whereas the KZone
212 and RndZone 213 can handle out-of-place writes. The

random accesses to prevent them from polluting sequential
streams.

According to one embodiment, the present flash transla­
tion layer 110 can impose replacement policies by handling
write operations issued from the operating system of a host
computer (not shown). The main procedure of an example
replacement policy is explained with reference to the
pseudocode Algorithm 3. This pseudocode is not intended to
be compiled, or even to represent any particular program-

US 9,898,200 B2
11

ming language. Instead, it is simply intended to illustrate and
describe the workings of the algorithm, which may be
implemented in any of a variety of programming languages.
When a collision occurs in a specific data block, the write­
ToLogB!k() (line 4 and 5 of Algorithm 3) routine is called
to cache a new page into the log block, otherwise the new
page is written to the data block. After writing the new page
into either the log block or the data block, the present flash
translation layer 110 can update the stream records based on
the sequential detection results that the stream detector 202
can provide.

2
3
4
5
6
7
8
9

Algorithm 3: write(LPA, data):

LBA-LPA/Np
offset-LPA mod Np
PBA-getPBA(LBA)
if a collision occurs at offset of the dataBlk of PBA

writeToLogBlk(LPA, LBA, offset, data)
else

write data at offset in dataBlk of PBA
updateStreamRecord(LP A)
end if

Due to the physical limitation of the SSD that the flash
memory 120 must be programmed to a sequential (incre­
mental) page addressing within a block, a page needs to be
a header to collect an entire (or partial) block to be able to
perform either a switch merge or a partial merge. The stream
detector 202 checks whether the page is a header of a block
(line 2 of pseudocode Algorithm 4. Again, the pseudocode
Algorithm 4 is not intended to be compiled, or even to
represent any particular programming language. Instead, it is
simply intended to illustrate and describe the workings of
the algorithm, which may be implemented in any of a variety
of programming languages.

If the page is a header (Case 1), the present flash trans­
lation layer 110 can treat a header page as a highly potential
sequential stream starter and insert it to the SeqZone 211.
Case 1.1 is when a page's owner block is found in the
SeqZone 211; the present flash translation layer 110 needs to

12
translation layer 110 can simply append the new page to that
block, otherwise the present flash translation layer 110 needs
to do a full merge to that block together with a new page.

Case 2.3 corresponds to the case where that page's owner
5 is not in the SeqZone 211 and the KZone 213. The stream

detector 202 can determine whether a page is a part of a
sequential stream or not. If the page is a part of a sequential
stream (Case 2.3.1), the present flash translation layer 110
can add the page to the KZone 212 since the KZone 212 is

10 intended to collect sequential streams that are not starting
from the header. Although the present flash translation layer
110 might not have a switch or partial merge in the KZone
212 due to out-of-page writes and K-associativity, the pres-

15 ent flash translation layer 110 can still reduce full merge
costs when separating these sequential streams from random
accesses. If the KZone 212 is full, the present flash trans­
lation layer 110 can full merge a victim block (by a FIFO
buffer or other buffer management schema selection order)

20
and then add that page to a new free block in the KZone 212.
If the KZone 212 is not full, the present flash translation
layer 110 can append the page to a block that has the lowest
associative degree. If the page is not determined to be a part
of a sequential stream, the present flash translation layer 110

25
can add the page to the RndZone 213 as shown in Case 2.3.2.
If the RndZone 213 is full, the present flash translation layer
110 can evict a victim block (by a FIFO buffer or other buffer
management schema selection order), and insert the page to
a new free block. Otherwise, the present flash translation

30
layer 110 can append the page to the RndZone 213.

It is noted that for the full merge operation in the SeqZone
211, the KZone 212, and the RndZone 213, the present flash
translation layer 110 can ignore the invalid pages and
consider only valid pages. The present flash translation layer

35
110 always knows the newest version of each page in the
buffer. Invalid pages are generated when a new page with the
same LPA arrives, and the present flash translation layer 110
can simply mark all existing same pages as invalid. It is
further noted that the present flash translation layer 110 takes

40
into consideration the invalid pages in the SeqZone 211
when doing switch merge and partial merge because newer
version of pages exist only in the blocks of the Seq Zone 211. do a switch merge if that block is full or a partial merge if

that block is not full. Then, the present flash translation layer
110 can insert the new page to a new free block. Case 1.2
(line 12 of Algorithm 4) is when the page's owner block is 45

not in SeqZone 211; the present flash translation layer 110
can insert that page to a free block in SeqZone 211. If there

Algorithm 4: writeToLogBlk(LPA, LBA, offset, data):

/* Case 1. Page is header * /
2 if offset--0

Bs-searchSameLBABlk:InSZ() is no free blocks in the SeqZone, the present flash translation
layer can conduct a switch merge or partial merge on a
victim block in advance. The victim block can be selected by 50

a buffer (e.g., a FIFO buffer), and a more sophisticated
selecting algorithm can be adopted based on associative
degree to optimize this process.

4

6
7
8
9

10 If the page is not a header (Case 2), the present flash
translation layer 110 can add the page to either the KZone
212 or the RndZone 213 or the SeqZone 211. Case 2.1
corresponds to the case when the page's owner is found in
the SeqZone 211, and the page is added to the SeqZone 211.

55 1l

If the page is continuous to the last page in the found block
and that block is not full, the present flash translation layer
110 can just append to that block (line 29 of Algorithm 4),
which is a good sequential write case. If the block is full, the
present flash translation layer 110 can full merge the block
with a new page (line 30 of Algorithm 4).

12

13
14

60 ;~

17
18
19
20
21

/* Case 1.1. Page's block is found in SeqZone, then
switchMerge or fullMerge with a new page */

if Bs!-Nil
if Bs is full

switchMerge(Bs)
SeqZone.add(getAFreeBlk().add(LPA, data))

elif Bs is not full
fullMerge(Bs, LPA, data)

end if
/* Case 1.2. Page's block is not found in SeqZone, then

switchMerge or partialMerge a victim block and add a new page into
a new free block * /

elif Bs -- Nil
Bv-SZ.selectVictimBlkFIFO()
if Bv is full

swtichMerge(Bv)
else

partialMerge(Bv)
end if
SeqZone.add(getAFreeBlk().add(LPA, data))

end if
Case 2.2 corresponds to a case where, if the page's owner

is found in the KZone 212, then the page is added to the
KZone 212. If that block is not full, the present flash

65 22 /* Case 2. Page is not header * /
23 else

US 9,898,200 B2

24
25
26

27
28
29
30
31

32
33

34
35
36
37
38

39
40
41
42

43
44
45
46
47
48

49
50
51
52
53
54
55
56
57

13
-continued

Algorithm 4: writeToLogBlk(LPA, LBA, offset, data):

Bs-SZ.searchSameLBABlk (LPA)
Bk-KZ.searchSameLBABlk(LPA)
/* Case 2.1. Page's owner is found in SeqZone, then add the

page to Seq Zone * /
ifBs!-Nil

if LPA--getLastLPA(LBA)+ 1
append (Bs, LPA, data)

else
fullMerge(Bs, LPA, data) /* merge the block with the
new page*/

end if
/* Case 2.2. Page's owner is found in KZone, then add the

page to KZone * /
elifBk !- Nil

if Bk is not full
append (Bk, LPA, data)

else/* the block is full */
fullMerge(Bk, LPA, data) /* merge the block with the
new page*/

end if
/* Case 2.3. Page's owner is not in SeqZone and K.Zone */
else

/* Case 2.3.1. Page is detected as part of a sequential
stream, add to K.Zone * /

if FT.seqStreamDetect(LPA)--True
if KZ is full

fullMerge(KZ.selectVictimBlkFIFO())
end if
append (KZ.findBlkWithLowestK(), LPA, data)

/* Case 2.3.2. Page is not detected as part of a sequential
stream, then add to RndZone * /

else
if RZ is full

Bv-RZ.selectVictimBlkFIFO()
fullMerge(Bv, LPA, data)
RZ.addBlkToTail(getAFreeBlk())

end if
RZ.append(LPA, data)

end if
end if

58 end if

14
the log block is not full, otherwise perform a full merge
operation by merging the log block with the new page (step
422). If the page's owner is not found in the SeqZone 211
(step 421), the stream detector 202 further checks if the

5 page's owner is found in the KZone 212 (step 431). If the
page's owner is found in the KZone 212 (step 431), the
stream detector 202 can append the page to the page's owner
in the KZone 212 if the page's owner is not full, otherwise
perform a full merge by merging the page's owner with the

10 new page (step 432).
If the page's owner is not found in either the SeqZone 211

or the KZone 212 (steps 421 and 431), the stream detector
202 further checks if the page belongs to a sequential stream

15
(step 441). If the page belongs to a sequential stream, i.e., the
page's owner is neither in the SeqZone 211 or the KZone
212, but the page is determined to be sequential (step 441)
but the page does not start from a header of a log block (step
402), the stream detector 202 can add the page to the KZone

20 212 (step 442), otherwise the FTL can add the page to the
RndZone 213 (step 443).

According to one embodiment, a method includes: receiv­
ing write request streams from a host computer, wherein
each write stream includes one or more write requests to

25 write data to log blocks of a nonvolatile memory and the one
or more write requests are addressed in a logical page
address (LPA); dividing log blocks of the nonvolatile
memory into a sequential zone, a K-associative zone, and a
random zone; detecting characteristics of the each write

30 request stream and determining whether the each write
request stream is either a sequential write stream that is
addressed to a page of a log block in a sequential order or
a random write stream that is addressed to a page of a log
block in a random order; and selectively storing the each

35 write request stream into one of the sequential zone, the
K-associative zone, and the random zone of the log blocks
of the nonvolatile memory based on the characteristics of the
each write request stream. A first group of the write request
streams that are sequential and start from a header page of FIG. 4 is an example flowchart for classifying a new page

into one of the three zones, according to one embodiment.
The stream detector 202 receives a write request in an LPA
addressed to a page of a log block (step 401). Depending on
the qualification of the write request, the stream detector 202
can direct the write request to one of the SeqZone 211, the
KZone 212, and the RndZone 213. First, the stream detector 45

202 checks if the page is a header of a log block (step 402).

40 a log block are stored in the sequential zone. A second group
of the write request streams that are sequential but do not
start from a header page of a log block are stored in the
K-associative zone. A third group of the write request
streams that are random are stored in the random zone.

The method may further include: performing a switch
merge operation using the first group of the write request
stream stored in the sequential zone; performing a partial
merge operation using the second group of the write request
streams stored in the K-associative zone; and performing a

If the page is a header of a log block, the stream detector 202
further checks if the log block (i.e., the page's log block or
the page's owner) is in the SeqZone 211 (step 403). If the log
block is found in the SeqZone 211, the stream detector 202
further checks if the log block is full or not (step 404). If the
log block is full, the stream detector can perform a switch
merge (step 405) and add the new page into a new log free
block (step 406). If the log block is not full (step 404), the
stream detector can perform a full merge by merging a
victim block with the new page (step 407).

If the log block that the page belongs to (i.e., page's
owner) is not found in the SeqZone 211 (step 403), the
stream detector 202 can perform a switch merge if the victim
block is full, otherwise perform a partial merge (step 411).
The FTL can add the new page into a new free block (step
412).

50 full merge operation using the third group of the write
request streams stored in the random zone.

The method may further include: determining that a page
of a write request is a header of a log block and the log block
stored in the sequential zone; and performing a switch merge

55 operation if the log block is full, otherwise identifying a
victim block in the sequential zone and performing a full
merge operation by merging the victim block with the page.

The method may further include: determining that a page
of a write request is a header of a log block and the log block

60 is not stored in the sequential zone; identifying a victim
block in the sequential zone; performing a switch merge
operation if the victim block is full, otherwise performing a
partial merge operation on the victim block; and adding the If the page is not a header of a block (step 402), the stream

detector 202 further checks if the log block that the page
belongs to (i.e., page's owner) is found in the SeqZone 211 65

(step 421). If the log block is found in the SeqZone 211, the
stream detector 202 can append the page to the log block if

page into a new free block.
The method may further include: determining that a page

is not a header of a log block and the log block is stored in
the sequential zone; and appending the page to the log block

US 9,898,200 B2
15

in the sequential zone if the log block is not full, otherwise
performing a full merge operation by merging the log block
with the page.

The method may further include: determining that the log
block is stored in the K-associative zone; and appending the
page to the log block in the K-associative zone if the log
block is not full, otherwise performing a full merge opera­
tion by merging the log block with the page.

The method may further include: determining that a log
block that a page belongs to in a write request is not stored
in either the sequential zone or the K-associative zone;
determining that the page belongs to a sequential stream;
and adding the page to the K-associative zone.

The method may further include: determining that a log
block that a page belongs to in a write request is not stored
in either the sequential zone or the K-associative zone;
determining that the page does not belong to a sequential
stream; and adding the page to the random zone.

The method may further include: storing a node that
corresponds to a page of a write request in a linked list,
wherein the node includes a logical page address and a
counter. The node is stored in a recency tier if the counter of
the node is lower than a threshold, and the node is stored in
a frequency tier if the counter of the node is higher than the
threshold.

The method may further include: receiving a new write
request addressed to a new page; determining that a logical
page address of the new page matches with an existing node;
and reordering the existing node to a header of the queue.

According to another embodiment, a memory device
includes: memory translation layer; a non-volatile memory
including log blocks and data blocks, wherein the log blocks
are divided into a first zone, a second zone, and a third zone,
and a stream detector. The stream detector is configured to:
receive write request streams from a host computer, wherein
each write stream includes one or more write requests to
write data to log blocks of a nonvolatile memory and the one

16
otherwise identify a victim block in the sequential zone and
perform a full merge operation by merging the victim block
with the page.

The stream detector may be further configured to: deter-
5 mine that a page of a write request is a header of a log block

and the log block is not stored in the sequential zone;
identify a victim block in the sequential zone; perform a
switch merge operation if the victim block is full, otherwise
perform a partial merge operation on the victim block; and

10 add the page into a new free block.
The stream detector may be further configured to: deter­

mine that a page is not a header of a log block and the log
block is stored in the sequential zone; and append the page
to the log block in the sequential zone if the log block is not

15 full, otherwise performing a full merge operation by merg­
ing the log block with the page.

The stream detector may be further configured to: deter­
mine that the log block is stored in the K-associative zone;
and append the page to the log block in the K-associative

20 zone if the log block is not full, otherwise perform a full
merge operation by merging the log block with the page.

The stream detector may be is configured to: determine
that a log block that a page belongs to in a write request is
not stored in either the sequential zone or the K-associative

25 zone; determine that the page belongs to a sequential stream;
and add the page to the K-associative zone.

The stream detector may be further configured to: deter­
mine that a log block that a page belongs to in a write request
is not stored in either the sequential zone or the K-associa-

30 tive zone; determine that the page does not belong to a
sequential stream; and add the page to the random zone.

The above example embodiments have been described
hereinabove to illustrate various embodiments of imple­
menting a system and method for interfacing co-processors

35 and input/output devices via a main memory system. Various
modifications and departures from the disclosed example
embodiments will occur to those having ordinary skill in the
art. The subject matter that is intended to be within the scope
of the invention is set forth in the following claims.

or more write requests are addressed in a logical page
address (LPA); detect characteristics of the each write
request stream and determining whether the each write 40

request stream is either a sequential write stream that is
addressed to a page of a log block in a sequential order or

What is claimed is:
1. A method comprising:

a random write stream that is addressed to a page of a log
block in a random order; and selectively store the each write
request stream into one of the first zone, the second zone, 45

and the third zone of the log blocks based on the charac­
teristics of the each write request stream. A first group of the
write request streams that are sequential and start from a
header page of a log block are stored in the first zone. A
second group of the write request streams that are sequential 50

but do not start from a header page of a log block are stored
in the second zone. A third group of the write request streams
that are random are stored in the third zone.

The first zone may be a sequential zone, the second zone
may be a K-associative zone, and the third zone may be a 55

random zone.
The flash translation layer may be configured to: perform

a switch merge operation using the first group of the write
request stream stored in the sequential zone; perform a
partial merge operation using the second group of the write 60

request streams stored in the K-associative zone; and per­
form a full merge operation using the third group of the write
request streams stored in the random zone.

The stream detector may be further configured to: deter­
mine that a page of a write request is a header of a log block 65

and the log block is stored in the sequential zone; and
perform a switch merge operation if the log block is full,

rece1vmg write request streams from a host computer,
wherein each write stream includes one or more write
requests to write data to log blocks of a nonvolatile
memory and the one or more write requests are
addressed in a logical page address (LPA);

dividing said log blocks of the nonvolatile memory into a
sequential zone, a K-associative zone, and a random
zone;

detecting characteristics of the each write request stream
and determining whether the each write request stream
is either a sequential write stream that is addressed to
a first page of a log block in a sequential order or a
random write stream that is addressed to a second page
of said log block in a random order; and

selectively storing the each write request stream into one
of the sequential zone, the K-associative zone, and the
random zone of the log blocks of the nonvolatile
memory based on the characteristics of the each write
request stream,

wherein a first group of the write request streams that are
sequential and start from a header page of said log
block are stored in the sequential zone,

wherein a second group of the write request streams that
are sequential but do not start from said header page of
said log block are stored in the K-associative zone, and

US 9,898,200 B2
17

wherein a third group of the write request streams that are
random are stored in the random zone.

2. The method of claim 1, further comprising:
performing a switch merge operation using the first group

of the write request stream stored in the sequential 5

zone;
performing a partial merge operation using the second

group of the write request streams stored in the K-as­
sociative zone; and

performing a full merge operation using the third group of 10

the write request streams stored in the random zone.
3. The method of claim 1, further comprising:
determining that a page of a write request is a header of

a log block and the log block is stored in the sequential
15

zone; and
performing a switch merge operation if the log block is

full, otherwise identifying a victim block in the sequen­
tial zone and performing a full merge operation by
merging the victim block with the page.

4. The method of claim 1, further comprising:
determining that a page of a write request is a header of

a log block and the log block is not stored in the
sequential zone;

identifying a victim block in the sequential zone;
performing a switch merge operation if the victim block

is full, otherwise performing a partial merge operation
on the victim block; and

adding the page into a new free block.
5. The method of claim 1, further comprising:
determining that a page is not a header of a log block and

the log block is stored in the sequential zone; and

20

25

30

18
determining that a logical page address of the new page

matches with an existing node; and
reordering the existing node to a header of the queue.
11. A memory device comprising:
a memory translation layer;
a non-volatile memory comprising log blocks and data

blocks, wherein the log blocks are divided into a first
zone, a second zone, and a third zone; and

a stream detector configured to:
receive write request streams from a host computer,

wherein each write stream includes one or more write
requests to write data to said log blocks of said non­
volatile memory and the one or more write requests are
addressed in a logical page address (LPA);

detect characteristics of the each write request stream and
determining whether the each write request stream is
either a sequential write stream that is addressed to a
first page of a log block in a sequential order or a
random write stream that is addressed to a second page
of said log block in a random order; and

selectively store the each write request stream into one of
the first zone, the second zone, and the third zone of the
log blocks based on the characteristics of the each write
request stream,

wherein a first group of the write request streams that are
sequential and start from a header page of said log
block are stored in the first zone,

wherein a second group of the write request streams that
are sequential but do not start from a header page of a
log block are stored in the second zone, and

wherein a third group of the write request streams that are
random are stored in the third zone.

appending the page to the log block in the sequential zone
if the log block is not full, otherwise performing a full
merge operation by merging the log block with the
page.

12. The memory device of claim 11, wherein the first zone
is a sequential zone, the second zone is a K-associative zone,

35 and the third zone is a random zone.

6. The method of claim 5, further comprising:
determining that the log block is stored in the K-associa­

tive zone; and
appending the page to the log block in the K-associative 40

zone if the log block is not full, otherwise performing
a full merge operation by merging the log block with
the page.

7. The method of claim 1, further comprising:
determining that said log block that a page belongs to in 45

a write request is not stored in either the sequential zone
or the K-associative zone;

determining that the page belongs to a sequential stream;
and

adding the page to the K-associative zone.
8. The method of claim 1, further comprising:
determining that a log block that a page belongs to in a

50

13. The memory device of claim 11, wherein the flash
translation layer is configured to:

perform a switch merge operation using the first group of
the write request stream stored in the sequential zone;

perform a partial merge operation using the second group
of the write request streams stored in the K-associative
zone; and

perform a full merge operation using the third group of the
write request streams stored in the random zone.

14. The memory device of claim 11, wherein the stream
detector is further configured to:

determine that a page of a write request is a header of said
log block and the log block is stored in the sequential
zone; and

perform a switch merge operation if the log block is full,
otherwise identify a victim block in the sequential zone
and perform a full merge operation by merging the
victim block with the page. write request is not stored in either the sequential zone

or the K-associative zone;
determining that the page does not belong to a sequential

15. The memory device of claim 11, wherein the stream
55 detector is further configured to:

stream; and
adding the page to the random zone.
9. The method of claim 1, further comprising:
storing a node that corresponds to a page of a write

request in a linked list, wherein the node includes a 60

logical page address and a counter,
wherein the node is stored in a recency tier if the counter

of the node is lower than a threshold, and

determine that a page of a write request is a header of a
log block and the log block is not stored in the
sequential zone;

identify a victim block in the sequential zone;
perform a switch merge operation if the victim block is

full, otherwise perform a partial merge operation on the
victim block; and

add the page into a new free block.
wherein the node is stored in a frequency tier if the

counter of the node is higher than the threshold.
16. The memory device of claim 11, wherein the stream

65 detector is further configured to:
10. The method of claim 9, further comprising:
receiving a new write request addressed to a new page;

determine that a page is not a header of a log block and
the log block is stored in the sequential zone; and

US 9,898,200 B2
19

append the page to the log block in the sequential zone if
the log block is not full, otherwise performing a full
merge operation by merging the log block with the
page.

17. The memory device of claim 11, wherein the stream 5

detector is further configured to:
determine that the log block is stored in the K-associative

zone; and
append the page to the log block in the K-associative zone

if the log block is not full, otherwise perform a full 10

merge operation by merging the log block with the
page.

18. The memory device of claim 11, wherein the stream
detector further is configured to:

determine that a log block that a page belongs to in a write 15

request is not stored in either the sequential zone or the
K-associative zone;

determine that the page belongs to a sequential stream;
and

add the page to the K-associative zone. 20

19. The memory device of claim 11, wherein the stream
detector is further configured to:

determine that a log block that a page belongs to in a write
request is not stored in either the sequential zone or the
K-associative zone; 25

determine that the page does not belong to a sequential
stream; and

add the page to the random zone.

* * * * *

20

