
1

Improving Flash Resource Utilization at
Minimal Management Cost in Virtualized

Flash-based Storage Systems
Jianzhe Tai§, Deng Liu‡, Zhengyu Yang§, Xiaoyun Zhu†, Jack Lo† and Ningfang Mi§

§Northeastern University, †VMware Inc., ‡Twitter Inc.

Abstract—Effectively leveraging Flash resources has emerged as a highly important problem in enterprise storage systems.
One of the popular techniques today is to use Flash as a secondary-level host-side cache in the virtual machine environment.
Although this approach delivers IO acceleration for VMs’ IO workloads, it might not be able to fully exploit the outstanding
performance of Flash and justify the high cost-per-GB of Flash resources. In this paper, we design new VMware Flash Resource
Managers (VFRM and GLB-VFRM) under the consideration of both performance and the incurred cost for managing Flash
resources. Specifically, VFRM and GLB-VFRM aim to maximize the utilization of Flash resources with minimal CPU, memory and
IO cost in managing and operating Flash for a dedicated enterprise workload and multiple heterogeneous enterprise workloads,
respectively. Our new Flash resource managers adopt the ideas of thermodynamic heating and cooling to identify data blocks
that can benefit the most from being put on Flash and migrate data blocks between Flash and magnetic disks in a lazy and
asynchronous mode. Experimental evaluation of the prototype shows that both VFRM and GLB-VFRM achieve better cost-
effectiveness than traditional caching solutions, i.e., obtaining IO hit ratios even slightly better than some of the conventional
algorithms as Flash size increases yet costing orders of magnitude less IO bandwidth.

Index Terms—Flash resource management, IO access pattern, Flash utilization, IO hit ratio, Virtualized storage systems

F

1 INTRODUCTION

With rapid developing of cloud computing, virtual-
ized storage techniques become highly demanded for
providing more capacity, and high performance, relia-
bility and availability. NAND-based Flash memory is
being widely deployed as a per-virtual disk, second-
level cache in such a virtualized storage system to
improve the IO performance and reduce the power
consumption. Such a cache is managed using caching
policies such as LRU or its variants, aiming to main-
tain the most likely-to-be accessed data for future
reuse [1], [2]. While straightforward, these approaches
have disadvantages in the following two aspects: the
first aspect is cost- and performance-effectiveness.
Since the cache is statically pre-allocated to each vir-
tual disk, and the caching algorithm computes the
cache admission and eviction independent of the IO
activities of other virtual machines, it is difficult for
the hypervisor to cost-effectively partition and allo-
cate Flash resources among multiple heterogeneous
virtual machines with different workloads; The other
disadvantage is scalability. Since caching is usually
implemented with a fine-grained cache line size (e.g.,
4KB, 8KB), it requires a large number of CPU cycles
for operations such as cache lookup, eviction, page
mapping, etc., a large amount of memory space for
maintaining cache metadata such as mapping table,
LRU list, hash table, etc., and a fair amount of IOs to

update the contents in Flash [3]. As the size of Flash
storage grows to hundreds of GB or even several TB,
the high cost of CPU, memory and IO bandwidth
reduces the benefit of virtualization, where virtual
machines are contending the same pool of resources
from host. Even worse, it hinders the deployment of
Flash resources in large scale.

To address these problems, we explore the Flash
usage model from the hypervisor’s point of view,
and define a new set of goals: maximize the per-
formance gain, and minimize the incurred cost for
CPU, memory and IO bandwidth [4], [5]. With re-
defined goals of using Flash, we first design VMware
Flash Resource Manager (VFRM) to manage Flash
resources in the virtual machine environment [4], [5]
for a dedicated enterprise workload and then develop
the global version GLB-VFRM to wisely allocate Flash
resources among multiple heterogeneous workloads.
Based on long-term observation of the IO access pat-
terns, VFRM uses the heating and cooling concepts
from thermodynamics to model the variation of IO
popularity of individual blocks. With better under-
standing of the variation of IO popularity, it predicts
the most popular blocks in the future and places them
into the Flash drive to maximize the IO absorption
ratio on Flash, which eventually maximizes the per-
formance benefits from Flash resources. In addition,
VFRM and GLB-VFRM use bins with large spacial
granularity (e.g., 1MB) as migration units to update

2

the placement of data blocks between Flash and mag-
netic disks (MDs) in a lazy and asynchronous manner,
which leads to a great saving in memory space for
keeping the metadata, and a significant reduction in
IOs that are needed for updating the contents in Flash.

A lot of SSD tiering solutions have been done in
industry [6], [7]. Compared to these existing solu-
tions, VFRM and GLB-VFRM are more cost-effective,
because our designs adopt a finer tiering granularity
(i.e., 1MB) which reduces the chance of having cold
data on Flash tier and thus makes more cost-effective
use of Flash. For all of the external solutions we
have examined, the tiering granularity ranges from
16MB to 1GB or even to an entire volume. Addition-
ally, VFRM and GLB-VFRM allow users to customize
their hybrid storage systems by choosing different
types and capacities of storage devices, e.g., Flash
memory and hard disks. Finally, as a new resource
management solution, VFRM and GLB-VFRM can be
well integrated with the existing features of VMware
vSphere Datacenter such as resources scheduling,
DRS [8], and VMotion, etc.

The remainder of this paper is organized as follows.
Section 2 discusses some related work. Section 3
presents the goals and metrics of leveraging Flash
technology in the virtual machine environment and
analyzes some IO traces of real workloads to moti-
vate the design of VFRM and GLB-VFRM. Section 4
describes the details of our designs. Section 5 eval-
uates VFRM and GLB-VFRM and compares existing
caching solutions. Finally, we summarize our work
and discuss the future work in Section 6.

2 RELATED WORK

Host-side caches are being widely accepted in modern
storage systems. Memcached is a distributed memory
caching system by adding a scalable object caching
layer to speed up dynamic Web applications and alle-
viate database load [9]. However, Memcache is more
like an in-memory data store rather than a caching
strategy in storage system. Flashcache is a kernel
module which is built using the Linux Device Mapper
(DM) and works primarily as a write back block
cache in general purpose [10]. Recently, Facebook
announced a new data management infrastructure,
called TAO, in which its caching layer is designed as
a globally distributed in-memory cache running on
a large collection of geographically distributed server
clusters [11].

Many efforts have focused on how to best utilize the
Flash resources as a cache-based secondary-level stor-
age system or integrated with HDD as a hybrid stor-
age system. Some conventional caching policies [1],
[12]–[14] such as LRU and its variants maintain the
most recent accessed data for future reuse while some
other works intended to design a better cache replace-
ment algorithm by considering frequency in addition

to recency [2], [15]. These caching algorithms compute
the cache admission and eviction on each data access
which is independent of the practical IO behavior.
[16] uses Flash resources as a disk cache and adopt
wear-level aware replacement policy based on LRU.
SieveStore [17] presented a selective and ensemble-
level disk cache by using SSDs to store the popular
sets of data.

Flash-based multi-tiered storage systems have been
recently studied in the literature [18]–[22]. For exam-
ple, [18] presented a multi-tier SSD-based solution to
perform dynamic extent placement using tiering and
consolidation algorithms. To fit SSDs into a storage
hierarchy, Hystor [19] and its related product Fusion
Drive [20] provide a hybrid storage system for identi-
fying performance- and semantically-critical data and
timely retaining these data in SSDs. However, these
approaches do not allow multiple entities to share
SSDs. A hypervisor-based design, named “S-CAVE”,
was presented in [21]. By identifying cache demands
of each VM, S-CAVE dynamically adjusts the cache
allocation among different VMs. This can be plugged
in vSphere ESX directly. [23] proposed an optimized
flash allocation algorithm based on both the cacheabil-
ity of different traces’ IO activities and tiered storage
characteristics like speed and price. Recently, [22]
proposed a new allocation model based on the notion
of per-device bottleneck sets. In this model, clients
that are bottlenecked on the same storage device
receive throughputs in proportion to their fair shares
while allocation ratios among clients in different bot-
tleneck sets are chosen to maximize overall system
utilization. [24] proposed a CPU cache partitioning
solution, whose perspective is mainly focusing on
resource (both compute and storage) constrained. We
notice that most of these approaches focus on how
to exploit and improve traditional caching algorithms
in a multi-tiered storage system, which still update
contents of Flash in a fine-grained mode (like LRU,
ARC, CAR). In contrast, our new resource manager
mainly focuses on reducing operational IO costs by
managing Flash in a coarse-grained manner, with
respect to both temporal (e.g., 5min) and spatial (e.g.,
1MB) granularities. Under VFRM, memory space for
keeping the metadata can be greatly saved and IOs
that are needed for updating the contents in Flash can
be significantly reduced as well.

The benefits of VFRM are mainly motivated by
three key observations of IO access patterns from
workload studies. The effective workload studies can
imply the accurate modeling, simulation, develop-
ment and implementation of storage systems. [25] in-
troduced twelve sets of long-term storage traces from
various Microsoft production servers and analyzed
trace characterizations in terms of block-level statis-
tics, multi-parameter distributions, file access frequen-
cies, and other more complex analyses. [26] presented
an energy proportional storage system by effectively

3

characterizing the nature of IO access on servers
using workloads from three production systems. [27]
created a mechanism for accelerating cache warmup
based on detailed analysis of block-level data-center
traces. They examined traces to understand the behav-
ior of IO reaccesses in two dimensions, e.g., temporal
and spatial behaviors. [28] is another good example of
technique design motivated by workload analysis in
which they proposed a write offloading design to save
energy in enterprise storage by a better understand of
IO patterns.

A lot of SSD tiering solutions have been done
outside VMware [6], [7], [29], [30]. Compared with
these solutions, VFRM has several advantages:

(1) Better cost-effectiveness: It is likely that the
pages of one block on Flash tier are not all hot
pages. Therefore the coarser the tiering granularity,
the more cold data could reside on Flash tier as
well as more waste of Flash resource. For all of
the external solutions we have examined, the tiering
granularity ranges from 16MB to 1GB or even to
an entire volume. In contrast, vFRM manages Flash
resources in the granularity of 1MB, which is much
finer and greatly reduces the chance of having cold
data occupying the costly Flash.

(2) Heterogeneity: All of those external tiering so-
lutions have a fixed and strict requirement on the
model/type of the devices of Flash tier and the
spinning disk tier. The tiering management software
is also running on the storage array side which is
transparent to the user. As a result, the user has no
control on the building blocks of hybrid tiered storage.
In contrast, VFRM can work with any type of Flash-
SSDs and storage array.

(3) vSphere friendly: As vFRM solves problems
from a resource management’s perspective, it enables
better integration with the existing vSphere features
such as resources scheduling, DRS, VMotion, etc.
Therefore, our solution is easy to be plugged into any
vSphere-based systems.

3 MOTIVATION
Flash resources are usually deployed as host-side
cache for data centers. The most significant benefit by
deploying Flash in systems is mainly in the consid-
eration of performance improvement, i.e., increasing
IO throughput and reducing IO latency. However,
such kind of deployment inevitably introduces extra
operational cost to the system. Motivated by this
challenging issue, we strive to develop a new Flash
management scheme, which is able to leverage the
knowledge of real workload patterns to maximize uti-
lization of flash resources and minimize operational
costs incurred by Flash management.

3.1 Goals and Metrics
Instead of focusing on improving IO performance of
an individual VM, we aim to maximize the utilization

of Flash resources and minimize the cost incurred in
managing Flash resources.

Maximizing Flash Utilization: When people buy
an SSD, they are actually paying for performance
rather than storage space. Therefore, we consider In-
put/Output Operations Per Second (IOPS), a common
performance measurement, as the metric of Flash
utilization and redefine one of our primary goals as
maximizing IOPS utilization. As IOPS capabilities of
Flash devices vary across different models, we alterna-
tively use IO hit ratio as the metric of Flash utilization.
IO hit ratio is defined as the fraction of IO requests
that are served by Flash. The higher the IO hit ratio,
the better the utilization of Flash resources. In order to
achieve high IO hit ratio, the most frequently accessed
data should be put on Flash media. As IO hit ratio
increases, the processing efforts required for these
IO requests are offloaded from the back-end storage
array to the Flash tier and the storage array can thus
allocate more processing power to serve other IO
requests, which actually improves the IOs that are not
served by Flash. This further improves the total cost of
ownership (TCO) in terms of financial (IOPS/$) and
power (IOPS/KWH) efficiencies of storage systems.

Minimizing CPU, Memory and IO Cost in man-
aging Flash: The CPU, Memory and IO bandwidth
are needed in Flash resource management. Today, a
single Flash-based SSD can easily reach up to 1TB
and the Flash resources are usually managed at a fine
granularity (e.g., 4KB or 8KB). Hence, it is fairly
likely to incur a high fraction of in-memory footprint
for the Flash related metadata. For example, if the
memory footprint equals to 1% of Flash space, then
it requires 10GB metadata for a SSD with 1TB size.
Such a large memory footprint limits the scalability of
deploying Flash resources with large capacity. There-
fore, our second goal is to minimize the other cost
incurred in managing and operating Flash resources.

3.2 IO Access Patterns
To understand volume access patterns in production
systems, we first study a suite of one week block IO
traces which were collected by MSR Cambridge in
2007 [28] from SNIA repository. In these IO traces,
each data entry describes an IO request, including
timestamp, disk number, logical block number (LBN),
number of blocks and the type of IO (i.e., read or
write). There are 36 traces from MSR-Cambridge in
total, which includes a variety of workloads. In this
paper, we select eight of them as representative and
summarize the statistics of these traces in Table 1.

For each workload, we calculate IO hit ratios us-
ing the LRU caching algorithm with fully associa-
tive cache, 4KB cache line and 1GB cache size.
The results in Table 1 show that the conventional
caching algorithms (e.g., LRU) cannot always per-
form well. For example, the IO hit ratio is less than

4

TABLE 1
Statistics for Selected MSR-Cambridge Traces. Volume size denotes the maximum LBN accessed in disk

volume. Working set size denotes the amount of data accessed. Re-accessed ratio denotes the percentage of
IOs whose re-access time is within 5min.

Category Name Server Volume Working Set Hit Ratio Re-access
Size (GB) Size (GB) by LRU Ratio

Friendly

mds0 Media Serv. 33.9 3.23 90.84% 95.35%
src12 Source Control Serv. 8.0 2.80 85.64% 94.81%
stg0 Web Staging Serv. 10.8 6.63 89.28% 92.71%
usr0 User Home Dir. 15.9 4.28 88.25% 96.03%

Unfriendly

stg1 Web Staging Serv. 101.7 81.5 34.60% 90.94%
usr2 User Home Dir. 530.4 382.7 19.49% 95.50%
web2 Web SQL Serv. 169.6 76.4 6.20% 95.45%
src21 Source Control Serv. 169.6 22.0 2.82% 96.04%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1 2 3 4 5 6 7

N
u
m

b
er

 o
f

A
cc

es
se

d
 B

in
s

(M
B

)

Time (day)

(b) stg0

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 1 2 3 4 5 6 7

N
u
m

b
er

 o
f

A
cc

es
se

d
 B

in
s

(M
B

)

Time (day)

(c) usr2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1 2 3 4 5 6 7

N
u
m

b
er

 o
f

A
cc

es
se

d
 B

in
s

(M
B

)

Time (day)

(d) web2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7

N
u
m

b
er

 o
f

A
cc

es
se

d
 B

in
s

(M
B

)

Time (day)

(a) src12

Fig. 1. Number of accessed bins per 5min of selected Cambridge traces.

3% under the “src21” workload. We thus coarsely
classify the workloads into two categories: “cache-
friendly” workloads (e.g., mds0, src12, stg0 and usr0)
and “cache-unfriendly” workloads (e.g., stg1, usr2,
web2 and src21). As shown in Table 1, cache-friendly
workloads always obtain higher IO hit ratios (around
90%) under conventional caching algorithms, while
cache-unfriendly workloads have relatively lower hit
ratios (less than 40%). We interpret these results by
observing that cache-unfriendly workloads often have
larger volume sizes and working set sizes (see the
third and the fourth columns in Table 1) than cache-
friendly workloads, where volume size indicates the
maximum LBN accessed in disk volume and working
set size indicates the amount of data accessed. This
means that the effectiveness of a cache is decided by
its size to some extent. A small cache can only hold
a small amount of data such that most of the cached
data might be evicted or flushed out from the cache
before it is reused if the actual working set size is
large. Consequently, it is highly likely that the most
recent or frequent data are not buffered in the cache
which thus incurs low IO hit ratio.

To further investigate the differences between
cache-friendly and cache-unfriendly workloads, we

partition the entire LBNs address space of each work-
load into bins (with an equal width of 1MB) and
count the number of accessed bins per 5min over
a period of seven days. Figure 1 shows the results
of two representative workloads from each category.
We observe that the cache-unfriendly workloads, (see
Figure 1 (c) and (d)), have more IO spikes than the
cache-friendly workloads, (see Figure 1 (a) and (b)).
We also observe that these spikes in cache-unfriendly
workloads are much stronger and longer (ranges from
1800MB to 16000MB of accessed data size), which
can dramatically degrade IO hit ratios due to the first-
time cache miss and even worse pollute the critical
data in Flash. This motivates us to design a new Flash
resource manager which can perform well for both
cache-friendly and cache-unfriendly workloads.

To better understand IO access patterns, we further
count the number of IO accesses for each bin in every
hour over a period of seven days. Figure 2 plots
the distribution of IO popularity of each bin and its
variation over time, where the x-axis represents the
LBN range, the y-axis represents the time and the
z-axis represents the IO popularity (i.e., number of
IO accesses) of each bin. The IO popularity of each
bin was also represented in greyscale. A darker scale

5

Fig. 2. IO popularity analysis of selected Cambridge traces.

Fig. 3. IO popularity analysis of three traces.

represents a greater popularity. To further validate
our observations in IO access patterns, we select
other three real workload variants. The first trace is
collected from Microsoft Exchange Server 2007 SP1
using the event tracing for a duration of 24 hours.
The second one is Microsoft production server trace
from RADIUS Back-end SQL Server for a duration
about 17 hours [25]. The third one is the trace collected
by Florida International University (FIU) from the
first of four different end-user and developer home
directories for a duration of 24 hours [26]. All these
three traces are block level disk IOs with the same IO
properties of MSR traces. Figure 3 shows the distri-
bution of IO popularity of the three trace variants.

3.3 Observations
Among a number of interesting findings, we have
three key observations that inspire the design of
VFRM:
[Obv. 1] The block access frequency exhibits a bimodal
distribution. Most of the bins are accessed rarely (i.e.,
less than 10 times a day), while a small fraction of the
bins are accessed extremely frequently (i.e., more than
thousands of times a day). This implies that only a
small number of bins are popular enough to be placed
on flash tier, while most of the remaining bins are not
deserved for the high performance yet expensive flash
resource. This observation also motivates that vFRM

is suitable to be managed in a coarse granularity (i.e.,
1MB bin).
[Obv. 2] The distribution of IO popularity does not
vary significantly over time. This implies that VFRM
does not need to actively and frequently update con-
tents of Flash. The reaccess ratio in Table 1 further
verifies that most of IO re-accesses happen in 5min.
Thus, a lazy and asynchronous approach should be
sufficient for minimizing operational cost.
[Obv. 3] The distribution of IO popularity varies
across workloads and volumes. This implies that dif-
ferent applications lead to diverse distributions of
popular bins and thus need different amount of Flash
resources.

4 VFRM DESIGN AND ALGORITHMS
Inspired by the above observations, we design VFRM,
a Flash resource manager to manage data blocks at
the granularity of hypervisor file system block. VFRM
dynamically relocates the data blocks between the
Flash tier and the spinning disk tier to gain the most
performance benefits from Flash. Additionally, it does
the data block relocation lazily and asynchronously,
which significantly reduces the cost for CPU, memory
and IO incurred in managing Flash resources. By
having the Flash tier absorbing more IO requests
from VMs, VFRM lessens the contention for the IO
bandwidth of the underlying storage, which in turn

6

accelerates the IO access for data on the spinning disk
tier. Note that we intentionally skip the availability
problem of locally attached Flash device, which is
beyond of the goals of this paper. In this paper,
we assume that the Flash device already has a high
availability.

4.1 Main Architecture

Fig. 4. VFRM ’s architecture overview.

Figure 4 shows the architecture overview of VFRM,
which consists of three major components: (1) a mod-
ified VMware Virtual Machine File System (VMFS)
that allows composing a hybrid file with mixed blocks
from both the spinning disk tier and the Flash tier via
block mapping; (2) a tiering manager that monitors
IO activities, makes migration decisions, and then
generates tiering tasks for migrating hot blocks into
the Flash tier and cold blocks out to the spinning disk
tier; and 3) a pool of migrator threads that execute the
migration tasks.

4.2 Hybrid File
A Virtual Machine Disk (VMDK) is essentially a file
on a VMFS volume with all of its blocks allocated
from the same VMFS volume [31]. In this paper, we
propose a new type of file, called hybrid file, to extend
the VMDK from spinning media to Flash media. A
hybrid file comprises two files: a base file and a peer
file. As such, the hybrid file can span across both tiers
with the hot blocks in its peer file on the Flash tier and
the cold ones in its base file on the spinning disk tier.

The peer file is a sparse file and its internal blocks
keep the same logical offset in VMDK as their cor-
responding blocks in the base file. When overlap-
ping these two files, we get a hybrid file with the
mixed blocks from both the spinning media and the
Flash media. The VMFS file block address resolution
mechanism is designed to identify the location of a
requested block (i.e., in the peer file or in the base
file) and to seamlessly re-direct the IO to the right tier.
Although the peer file has the same size of address
space as its base file, it does not necessarily occupy

the same size of Flash resources. In fact it is mostly
sparse, because only a small portion of the blocks are
allocated as hot blocks on the Flash tier. As each hot
block keeps the same logical offset in both files, there
is no need to add an extra mapping table to store the
location mapping information of hot blocks between
the Flash tier and the spinning disk tier. Moreover,
we can use the inode pointer cache of the peer file
as the block look up table, which further eliminates
the need for an extra lookup table. If a block has been
migrated to the Flash tier, the corresponding block
will have been allocated and the inode pointer cache
of the peer file can indicate the existence of this block.
As a result, we have another saving of the memory
space for the lookup table. During the migration of
Flash resource, the dirty blocks on the Flash tier of the
source host need to be migrated to the Flash tier of the
destination host if the Flash tier cannot be accessed by
both source and destination hosts. If the Flash tier is
not shared and there is not Flash on the destination
host, VFRM will collapse this hybrid file via writing
the dirty blocks back to the spinning disk tier. In the
virtualized environment, a virtual disk is a file on
VMFS, the design of hybrid file automatically enables
hybrid storage for VMs.

4.3 Basic Data Structure
Heat map: Heat map is used to represent the IO
popularity statistics. Each 1MB block of the files on
VMFS has on-flash metadata associated with it as
heat map. The per-block metadata contains 16 bytes
to record the number of IO accesses in which each
2 Bytes denotes the IO access count that happened
in one epoch (e.g., 5min). In our implementation, we
store the IO statistics for the previous 8 epochs. The
details of the usage of IO statistics to predict the IO
popularity can be found in Section 4.4.2. In addition,
we have 8 bytes of metadata to represent the logical
address of the file descriptor and 4 bytes for the logical
offset of the block. So that each 1MB block requires 28
bytes to hold the popularity statistics, which is only
0.0027% of the size of VMDK. And more importantly,
heat map does not necessarily need to be pinned in
memory. It only needs to be retrieved in memory for
every 5min when we want to use it to figure what
blocks need to be migrated into Flash tier and what
blocks need to be migrated out. We will discuss more
of the details in the following sections.
Tiering map: Tiering map is used to represent place-
ment of the blocks between two tiers. A tiering
map is specifically associated with a file and saved
alongside the VMDK descriptor. It can be used to
quickly warmup the hot blocks after migration of
Flash resources. In the tiering map, one bit represents
in which tier a block is located. Therefore the metadata
footprint overhead is only about 0.00001% of the size
of VMDK. The same as the heat map, tiering map
does not need to be pinned in memory permanently.

7

4.4 Temperature-based Tiering Manager

The main task of a tiering manager is to migrate data
blocks between spinning disk tier and Flash tier to
gain the most performance benefit from Flash.

4.4.1 Four Steps of Auto-Tiering

There are four steps to place a block on the right tier.
Step 1: The IO stats collector collects the IO activities
at runtime and periodically flushes the IO popularity
statistics to disk.
Step 2: The tiering manager identifies the most pop-
ular blocks in the scope of all VMDK files based
on a temperature-based model. We will discuss the
temperature-based model in the following section.
Step 3: The tiering manager further generates a set of
migrate-in (i.e., hot data into Flash) and migrate-out
(i.e., cold data out of Flash) tasks.
Step 4: The migrators finally execute migration tasks.
As a block migration involves modifying the file
inode, all migration tasks are performed in the context
of transactions to ensure the consistency of VMFS in
case of host crash.

4.4.2 IO Popularity Prediction Model

We now define a temperature-based model for pre-
dicting the IO popularity of each block. In this model,
we apply the concepts of heating and cooling from
thermodynamics to represent the variation of IO pop-
ularity with time passing. When IO requests flow to
a block, that particular block gets heated. With time
passing, the heated block cools down. In general,
we consider m minutes (e.g., m = 5 in our experi-
ments) as an epoch and let T (i) denote the estimated
(or predicted) temperature of a block during the ith

epoch. Assume that for each epoch, we always have N
previous epochs available. We then use the following
equation to calculate a block’s temperature:

Ti =
NX

j=1

H(Mi�j) · C(j), (1)

where Mi�j is the number of IO requests to that
block in the past (i� j)th epoch. H(Mi�j) and C(j)
denote the heating contribution and cooling factor
respectively that are from the IO requests in the past
(i� j)th epoch. Specifically, we define H(Mi�j) as a
linear function, such that the heating temperature in
the (i� j)th epoch is proportional to the number of
IO requests during that epoch.

H(Mi�j) = � ·Mi�j . (2)

Here, � is a tunable constant that determines how
important one workload is relative to other work-
loads. The greater the � is, the faster the block gets
warmed up with the same number of IO requests. We

define the cooling factor C(j) as a function of the time
distance (i.e., j epochs) from the current epoch.

Cj =

⇢
N+1�j

N , 1 j < N
2 + 1

1
2j�3 ,

N
2 + 1 j N

. (3)

Such a cooling factor represents the declining heat-
ing effects with time passing. Currently we adopt
a cooling scheme that linearly cools down in the
first half of epochs and exponentially cools down
in the second half of epochs. The heuristic behind
this cooling scheme is that recent IO activities have
more influence than the ones in the past. Using the
above equations, we update instant and cumulative
temperatures for all blocks for each epoch (i.e., every
m minutes) based on their history temperatures in
recent N epochs and IO request numbers during the
current epoch. Moreover, as we adopt the concept
of heating and cooling from thermodynamics to age
the old epochs, we consider the fact that recent IO
activities have more influence than the ones in the
past by assigning different weights to the tempera-
tures of recent N epochs. We then re-order all the
blocks according to their cumulative temperatures to
determine the popularity of these blocks. The most
popular blocks (with highest temperatures) should be
placed in the Flash tier based on the available capacity
of Flash resources while the remaining blocks will be
kept on the spinning disk tier.

4.5 Global vFRM among Multiple Heterogeneous
VMs
In a virtualization environment, multiple VMs often
share storage services and each VM has its own
workload pattern and caching requirement. In most of
such shared virtualization platforms, Flash is statically
pre-allocated to each virtual disk (VMDK) for sim-
plicity and the caching algorithm decides the cache
admission and eviction for each VM only based on IO
requests to that particular VM regardless of IOs to the
others. Therefore, it is difficult for the hypervisor to
cost-effectively partition and allocate Flash resources
among multiple heterogeneous VMs, particularly un-
der diverse IO demands. In this section, we further
investigate the benefits of VFRM for managing Flash
resources among multiple heterogeneous VMs. Our
goal is to fully leverage the outstanding performance
of shared Flash resources under the global view of
caching management. The basic idea of the global
version of VFRM is to divide Flash resources among
multiple VMs with the goals of fully utilizing Flash
and minimizing the operational cost. Intuitively, there
are two straightforward approaches which simply
allocate Flash resources among VMs by either equally
assigning Flash to each VM or managing Flash re-
sources in a fair competition mode. In the former ap-
proach, all VMs are purely isolated in using their own
Flash resource and the caching management is fully

8

affected by their own workload changes, while the
second approach allows all VMs to freely use or share
the entire Flash, such that the caching management is
centrally interfered by the intensity of all workload
changes.

Public Zone

 Lower Priority

Evict to MD

Higher Priority

Evict Bins

Private Zone

VM2VM1

Hot

Private Zone Public Zone

Cold

Hot

Hot

Extra Bins

Cold

(a)

(b)

Extra
Bins ColdHot

VM2VM1

VM2

VM1

Fig. 5. Flash contents updating procedure of GLB-
VFRM.

Unfortunately, these two straightforward
approaches cannot fully utilize the benefits of
Flash, particularly when the workloads frequently
change and bursts or spikes of IOs occur from time
to time. If Flash is equally reserved and assigned to
all VMs, then VMs with bursty IOs or strict SLAs
(Service-Level Agreement) cannot obtain more Flash
resources. On the other hand, the second approach
solves this issue by allowing all VMs to preempt
or compete the Flash based on their present IO
demands. Thus, VMs with higher IO demands can
occupy more Flash resources by evicting less-accessed
data from other VMs. However, under this approach,
VMs with bursty IOs might occupy almost all the
Flash resources and thus pollute the critical caching
of other VMs. It is even worse that bursty workloads
usually have less re-accesses in the long term. To
wisely allocate Flash resources among all VMs, we
develop the global version of VFRM which takes the
dynamic IO demands of all VMs into consideration
and divides Flash into a private zone and a public
zone. Specially, the private zone is designed for
reserving Flash for each VM in order to cache their
recently accessed working sets, while the public
zone is used to absorb and handle bursty IOs by
being fairly competed among VMs according to
their data popularities. We first implement a global
VFRM algorithm, named “GLB-VFRM", such that all
VMs are assigned the equal portion of Flash that

is pre-allocated in the private zone. Algorithm 1
shows the pseudo code of GLB-VFRM. Figure 5
illustrates the Flash contents updating procedure. To
manage each VM’s private Flash, we sort its recently
accessed bins (i.e., 1MB) in the non-increasing order
of their IO popularities. The top bins (i.e., with
highest IO popularities) are then assigned to private
Flash, see Figure 5(a). This procedure is denoted as
UpdatePrivateZone in Algorithm 1. Meantime, both
the residual of the recently accessed bins that cannot
be cached in the private zone due to the limited
space (i.e., extraBin in Algorithm 1) and the bins that
are evicted from the private zone with less recency
(i.e., evictBin in Algorithm 1) are then flushed into
the public zone, see Figure 5(b). The public zone
collects these data sets from all VMs and stores the
critical data as much as possible according to their IO
popularities, see the procedure of UpdatePublicZone
in Algorithm 1. By this design, if some VMs receive
higher IO demands than others, they can then occupy
more Flash resources in the public zone (e.g., the
extra bins of VM1 in Figure 5(b)), especially to
handle their bursty demands. More importantly,
bursty VMs cannot arbitrarily pollute the critical
data of other VMs because each VM now owns their
isolated Flash in the private zone which cannot be
preempted by other VMs and thus guarantees the
performance to some extent.

5 EVALUATION

In this section, we present our experimental results
to demonstrate the effectiveness of VFRM for a sin-
gle enterprise workload and GLB-VFRM for multiple
enterprise workloads with respect to our primary
goals: maximizing Flash utilization and minimizing
IO cost incurred in managing Flash. We first introduce
the performance metrics and how they are measured
to evaluate the effectiveness of our Flash managing
algorithms. We then present the evaluation by im-
plementing VFRM and GLB-VFRM as a trace-replay
simulation program. For comparison, we also treat
Flash as a second-level cache and implement the
LRU, ARC [2] and CAR [32] caching solutions in our
simulation.

5.1 Performance Metrics
In this section, we first introduce two performance
metrics: IO hit ratio and IO cost. We consider a com-
bination of these two metrics as a criterion to evaluate
the effectiveness of our Flash managing algorithms.
We also discuss the approaches which we used to
calculate the overall IO cost under both the proposed
and the conventional Flash managing algorithms.
IO Hit Ratio: IO hit ratio is defined as the fraction of
IO requests that are served by Flash. An IO request
might contain more than one page. We say an IO

9

TABLE 2
The necessary SSD and MD operations for all caching conditions.

(a) Operations for IO Access Cost
Read Hit Read Miss Write Hit Write Miss

LRU/ARC/CAR SSD Read MD Read + SSD Write SSD Write(4KB) SSD Write
VFRM/GLB-VFRM SSD Read MD Read SSD Write MD Write(128KB)

(b) Operations for Flash Update Cost
LRU/ARC/CAR Evict Dirty Page

(4KB) SSD Read + MD Write
VFRM/GLB-VFRM Admin Hot Bin Evict Cold & Dirty Bin

(128KB) MD Read + SSD Write SSD Read + MD Write

TABLE 3
Measured average IO response times of various types of IO operations at Flash and spinning disk.

Latency TSsdRead (µs) TSsdWrt (µs) TMdRead (µs) TMdWrt (µs)
4K Sequential 53 59 63 92

128K Sequential 558 1242 1070 1104
4K Random 135 58 7671 3922

128K Random 790 1241 8665 4942

request to be Flash hit only when all of its associated
pages are cached in Flash. Higher IO hit ratio indicates
that more IOs can be accessed from Flash directly
which accelerates the overall IO performance. Thus,
one of our primary targets is to increase IO hit ratio
for improving Flash utilization.
IO Cost: IO cost consists of two parts: IO access
cost and Flash contents updating cost. Specifically, IO
access cost can be represented as IO response time
or IO throughput (e.g., IOPS). For example, in the
case of read miss, LRU reads missed pages from MD
and caches them in Flash. Thus, the corresponding IO
access cost is the time spent during this procedure.
Moreover, extra time is needed to flush (or evict)
dirty pages when newly accessed pages are admin-
istrated but Flash is full. We here consider such data
movements between Flash and MD as Flash contents
updating cost and include this cost in the overall IO
cost. We use Eq.(4) to calculate the overall IO cost
CIO, where CIOResp and CFlashUpdate represent the
IO access cost and the Flash contents updating cost,
respectively. All N terms indicate the access numbers
of SSD Read (NSsdRd), SSD Write (NSsdWrt), MD Read
(NMdRd), and MD Write (NMdWrt), while all T terms
(e.g., TSsdRead and TMdRead) show the corresponding
average IO latency for each operation.

CIO = CIOAccess + CFlashUpdate

= NSsdRd · TSsdRd +NSsdWrt · TSsdWrt

+NMdRd · TMdRd +NMdWrt · TMdWrt (4)

In our evaluation, we use bins of large spacial
granularity (i.e., 1MB) as migration unit and choose
an epoch of 5min to update the placement of data
in Flash. By default, a single block size is set to
1MB in VMware VMFS [33], [34], such as the newly
created VMFS-5 datastore. We thus set a bin size to

1MB as well in order to be compatible with VMware
VMFS, making our approach pluggable. Additionally,
users do not often change a single block size as
different block sizes may cause some problems. For
example, neither VMware vSphere Storage APIs –
Array Integration (VAAI) nor VMware Consolidated
Backup (VCB) using hot-add backup work in a VMFS
datastore with different block sizes, as discussed in
[35]. The choice of 5min temporal granularity is mo-
tivated by the observations shown in Section 3.2. We
found that more than 95% of bins are re-accessed
within 5min and the distribution of the IO popularity
does not vary significantly over time. Our approach
thus opts to update contents of Flash every 5min
such that VFRM can capture the accesses of most
IOs with minimum operational cost. In contrast, short
temporal granularity (i.e., less than 5min) might incur
extra operational cost, without any increasing of IO hit
ratio.

The basic IO sizes for the conventional caching algo-
rithms and VFRM/GLB-VFRM are specified as 4KB
and 128KB, respectively. Since our Flash resource
manager uses bins of large spacial granularity (i.e.,
1MB) as migration unit, large IOs (e.g., 128KB) can
be employed in operation to improve disk IO per-
formance. Therefore, all T terms for the conventional
caching algorithms and VFRM/GLB-VFRM are the
corresponding disk performance of 4KB and 128KB
IOs, respectively. Table 2 further presents the related
IO operations for IO access (see (a) in the table)
and Flash contents updating (see (b) in the table)
under both the conventional caching algorithms and
our Flash resource managers (VFRM and GLB-VFRM)
when we are in four different scenarios, i.e., read hit,
read miss, write hit, and write miss. As shown in
Table 2(a), when we have a read or write miss, our

10

 75

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000

H
it

 R
at

io
 (

%
)

Cache Size (MB)

(a) mds0

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000

H
it

 R
at

io
 (

%
)

Cache Size (MB)

(b) src12

 75

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000
H

it
 R

at
io

 (
%

)

Cache Size (MB)

(d) usr0

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000

H
it

 R
at

io
 (

%
)

Cache Size (MB)

(c) stg0

LRU ARC CAR vFRM

Fig. 6. IO hit ratios of VFRM, LRU and ARC.

Flash managers always redirect IOs to the spinning
disk without updating the contents in Flash, and thus
only trigger the operation of MD read/write, which
is different from the conventional caching algorithms.
As shown in Table 2(b), the conventional caching
algorithms need a SSD read and a MD write to evict
a dirty page from Flash to spinning disks. While our
Flash managers only trigger move-in (for hot bins)
and move-out (for cold bins) operations every epoch
(e.g., 5min). Thus, we count the number of hot and
cold bins and consider 8 IOs of MD Read and SSD
Write (resp. SSD Read and MD Write) for administrat-
ing (resp. evicting) a hot (resp. cold) bin in Flash as
each IO operation is 128KB and the bin size is 1MB.
Table 3 illustrates the actual average IO response times
(in microseconds) of various types of IO operations at
both Flash and spinning disk devices. These results
were measured from an Intel DC S3500 Series

SSD with the capacity of 80GB and a Western

Digital WD20EURS-63S48Y0 hard drive with 2TB
and 5400 RPM. As the conventional caching algo-
rithms use 4KB as the cache line size while VFRM
and GLB-VFRM set the bin size of 1MB and update
Flash contents using the IO size of 128KB, we present
in Table 3 the measured response times for two levels
of granularity (i.e., 4KB and 128KB) in both sequen-
tial and random modes. These results will be used to
calculate the overall IO cost as shown in Eq.(4).

5.2 Performance Evaluation for a Single Enter-
prise VM
In this section, we conduct experiments to verify the
effectiveness of VFRM for a single enterprise VM case.

5.2.1 IO Hit Ratio
We first evaluate the IO hit ratio (i.e., the fraction of
IO requests that are served by Flash) under VFRM
using the representative MSR-Cambridge traces intro-
duced in Section 3.2. Each trace represents the work-
load from a dedicated VM in the virtualized storage
systems. For simplicity, we treat every workload as
equally important (i.e., setting � equal to one). We will
evaluate the impact of � in the clustering environment
in our future work. The IO hit ratios with the conven-
tional caching schemes (e.g., LRU, ARC and CAR) are
also measured. We conduct experiments with various
Flash sizes ranging from 100MB to 4GB and replay
each trace separately. Figure 6 clearly shows that as
the size of Flash increases, the IO hit ratio of VFRM
catches up or even outperforms those of LRU, ARC
and CAR for most of the workloads. As the capacities
of Flash devices are usually large, VFRM is practically
better in improving Flash utilization (e.g., IOPS) than
classical caching solutions.

5.2.2 IO Cost
For both VFRM and existing caching solutions, inter-
nal IO costs are needed for both IO response and Flash
contents updating, which is another type of perfor-
mance criterion incurred in managing and operating
Flash resources. VFRM only updates the contents
every migration epoch (e.g., 5min). In contrast, con-
ventional caching updates the contents on every cache
miss. Figure 7 shows the overall IO costs under both
VFRM and LRU/ARC/CAR caching schemes. Here,
Flash size is set to 4GB. The numbers on top of each
VFRM bar denote the relative improvement of the

11

Algorithm 1: Initial Task Assignment
Input: n: the number of VMs, popBin[i]: accessed bins

of the ith VM in last epoch (e.g., 5min),
prvBin[i]: cached bins of the ith VM in private
zone, pubBin: cached bins of all VMs in public
zone

Output: flashBin: bins need to be cached in Flash
1 Procedure G1-vFRM()

2 UpdatePrivateZone();
3 UpdatePublicZone();
4 for i 1 to n do
5 flashBin + = prvBin[i];
6 flashBin + = pubBin;
7 return flashBin;
8 Procedure UpdatePrivateZone()

9 for i 1 to n do
10 popDiff = bins of popBin[i] which are not in

prvBin[i];
11 prvDiff = bins of prvBin[i] which are not in

popBin[i];
12 if len(popBin[i]) < len(prvBin[i]) then
13 j = len(popDiff);
14 itemL = number of j bins in prvBin[i]

with lowest IO popularity;
15 evictBin + = itemL;
16 prvBin[i] � = itemL;
17 prvBin[i] + = popDiff ;
18 else
19 evictBin + = prvDiff ;
20 j = len(prvBin[i]);
21 prvBin[i] = number of j bins in

popBins[i] with highest IO popularity;
22 extraBin + = the remaining bins of

popBins[i] which are not in prvBin[i];
23 return;
24 Procedure UpdatePublicZone()

25 if len(extraBin) � len(pubBin) then
26 j = len(pubBin);
27 pubBin = number of j bins in extraBin with

highest IO popularity;
28 else if

len(extraBin) + len(evictBin) � len(pubBin) then
29 j = len(pubBin) � len(extraBin);
30 itemH = number of j bins in evictBin with

highest IO popularity;
31 pubBin = extraBin + itemH ;
32 else
33 j = len(extraBin) + len(EvictBin);
34 itemL = number of j bins in pubBin with

lowest IO popularity;
35 pubBin � = itemL;
36 pubBin + = extraBin + evictBin;
37 return;

number of IOs in relative of LRU. Lower percentage
implies more reduction. We observe that in all cases,
the IO costs of VFRM is far less than those of the
other three classic caching solutions. In fact, most of
them are order of magnitude better than the costs
with LRU, ARC or CAR. For example, IO costs for
mds0 workload is only 31.87% of that of LRU solution.
With such a great saving, VFRM can have more Flash
IO bandwidth serving the IO requests, which further
improves the VM’s IO performance.

5
5

.6
2

%

3
1

.8
7

%

5
4

.6
0

%

3
0

.8
2

%

LRU

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

mds0 src12 stg0 usr0

P
er

ce
n

ta
g

e
o

f
IO

 C
o

st
 (

%
)

vFRMCARARC

 0

Fig. 7. IO costs by using MSR-Cambridge traces. The
relative IO costs with respect to LRU are also shown
on the bars of VFRM.

5.3 Performance Evaluation for Multiple VMs
In this section, we evaluate the effectiveness of our
GLB-VFRM algorithm on allocating Flash resources
among multiple enterprise applications (or VMs). The
evaluation is conducted by using trace-replay sim-
ulations with 8 selected MSR-Cambridge IO traces
(see Table 1). As shown in Section 3.2, these MSR-
Cambridge IO traces can be classified into two cate-
gories, cache-friendly and cache-unfriendly. Thus, we
generate three workloads (“cf4”, “cuf4”, and “all8”)
by mixing 4 cache-friendly traces, 4 cache-unfriendly
traces, and all 8 traces, respectively. The timestamps of
IO requests in each trace are normalized by a unified
simulation start time and then used to determine the
arrival times for each IO request in the workload.

The metrics considered in our evaluation include
Flash utilization (in terms of IO hit ratio) and Flash
managing overhead (with respect with IO cost). For
comparison, we also present the results under three
conventional caching algorithms, e.g., LRU, ARC and
CAR. We also conduct experiments with various Flash
sizes ranging from 1G to 32G. In our GLB-VFRM
algorithm, the entire Flash is statically divided into
a private zone and a public zone; for example, 50% of
Flash space is assigned to each of these two zones in
our evaluation. Meanwhile, GLB-VFRM dynamically
adjusts the partitioning of the private zone among
different VMs.

5.3.1 Hit Ratio
Figure 8 illustrates IO hit ratios as a function of
Flash size under three workloads (i.e., “cf4”, “cuf4”,
and “all8”). We first observe that all these algo-
rithms (including our GLB-VFRM) achieve high IO
hit ratios when we have 4 cache-friendly traces (or
VMs), see plot (a) in Figure 8. More importantly,
under this cache-friendly workload, GLB-VFRM gains
better Flash utilization than the conventional caching
algorithms; IO hit ratios under GLB-VFRM keep rising
to 99% as the capacity of Flash increases, while IO
hit ratios under the conventional ones stop at around

12

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8 12 16 24 32

H
it

 R
at

io
 (

%
)

Cache Size (GB)

(b) cuf4

 25

 30

 35

 40

 45

 50

2 4 8 16 24 32 48 64

H
it

 R
at

io
 (

%
)

Cache Size (GB)

(c) all8

 75

 80

 85

 90

 95

 100

1 2 4 8 12 16 24 32

H
it

 R
at

io
 (

%
)

Cache Size (GB)

(a) cf4

LRU

ARC

CAR

GLB−vFRM

Fig. 8. IO hit ratios under three workloads (a)“cf4”,
(b)“cuf4”, and (c)“all8”.

93% when Flash size is larger than 4GB. We also
observe that under the cache-friendly (“cuf4”) and
mixed (“all8”) workloads, the IO hit ratios of GLB-
VFRM catch up and even slightly overcome some of
the conventional algorithms as Flash size increases.
We further look closely at IO accesses in these three
workloads. As illustrated in Figure 1, IO spikes fre-
quently appear in most traces such that a large
number of bins are accessed during a short period
which thus degrades IO hit ratios due to the first-time
cache miss. Moreover, as the conventional caching
algorithms cache data once there is a cache miss, it is
highly likely that those IO spikes pollute the critical
data of other applications (VMs) in Flash, especially
if bins in these spikes are rarely reaccessed in near
future. Our GLB-VFRM algorithm attempts to avoid
such cache pollution by reserving private Flash for
each VM and further improve IO hit ratio by caching
data blocks in both private and public zones based on
their IO popularities. Consequently, as long as Flash

1
6
.4

1
%

1
5
.8

7
%

1
3
.1

0
%

1
4
.9

0
%

1
6
.2

1
%

1
5
.9

1
%

1
3
.3

5
%

1
5
.5

2
%

1
3
.9

7
%

1
6
.3

8
%

1
6
.0

8
%

1
6
.5

8
%

4
5
.6

6
%

3
6
.4

9
%

1
6
.8

4
%

1
5
.8

6
%

1
5
.4

0
%

3
6
.4

9
%

3
7
.4

7
%

4
2
.7

3
%6
5
.2

9
%

5
4
.7

5
%

6
3
.0

0
%

1
5
.2

3
%

2 8 12 16 24 32

N
o
rm

al
iz

ed
 I

O
 C

o
st

 (
%

)

Cache Size (GB)

(c) all4

 80

 70

 60

 50

 40

 30

 20

 10

 0

 30

 20

 10

 0

(a) cf4

Cache Size (GB)

N
o
rm

al
iz

ed
 I

O
 C

o
st

 (
%

)

322416128421

 100

 90

 80

 70

 60

 50

 40

 30

 20

ARC CAR GLB−vFRM

 10

 0

(b) cuf4

Cache Size (GB)

N
o
rm

al
iz

ed
 I

O
 C

o
st

 (
%

)

LRU

322416128421

 100

 90

 40

 50

 60

 70

 80

 90

 100

1 4

Fig. 9. Normalized IO costs (with respect to LRU) un-
der three workloads (a)“cf4”, (b)“cuf4”, and (c)“all8’.’

has enough capacity to hold active working sets of
all VMs, GLB-VFRM is able to improve IO hit ratio
(or Flash utilization) although GLB-VFRM does not
update Flash contents upon every IO miss as the con-
ventional caching algorithms do. On the other hand,
when Flash size is relatively small, especially for those
cache-unfriendly traces which have relatively large
working sets (see Table 1), the conventional caching
algorithms obtain higher hit ratios than GLB-VFRM
by using small cache line size (e.g., 4KB) and on-
the-fly updating Flash contents for each cache miss.
However, the cost of such caching algorithms is higher
as well, which will be discussed in the following
subsection. Therefore, GLB-VFRM can save lots of IO
costs while keeps the similar hit ratios compared with
conventional caching algorithms.

5.3.2 IO Cost
Figure 9 illustrates the normalized overall IO costs
with respect to LRU under both GLB-VFRM and
the conventional caching algorithms when we have
4 cache-friendly traces in “cf4”, 4 cache-unfriendly
traces in “cuf4”, and 8 mixed traces in “all8”. Con-
sistently with the results for a single VM shown in
Section 5.2, GLB-VFRM significantly reduces the over-
all IO costs for allocating Flash among multiple VMs

13

compared to the conventional caching solutions. For
example, under the “cuf4” workload (see Figure 9(a)),
the overall IO cost under GLB-VFRM is decreased up
to 65.29% and the relative reduction is increasing as
Flash size increases. There are two main reasons for
GLB-VFRM to have such low IO costs. First, instead
of updating Flash contents upon each cache miss,
GLB-VFRM, like VFRM, generates move-in/move-out
tasks for both private and public zones in Flash every
epoch (e.g., 5min). Such a lazy and synchronize way
allows GLB-VFRM to reduce the number of extra
IOs for Flash contents updating. Secondly, GLB-VFRM
adopts 1MB as the size of each bin and uses 8 IOs,
each of which has the size of 128KB, to move a bin
into (or from) Flash, which reduces the number of IOs
and shorten the latency for migrating a bin as well.
More importantly, GLB-VFRM consumes much less IO
cost for managing Flash resources when we have the
“cuf4” and “all8” workloads (see Figure 9(b) and (c))
although the IO hit ratios of GLB-VFRM are slightly
lower. We thus conclude that under the consideration
of both Flash utilization (i.e., IO hit ratio) and Flash
managing overhead (i.e., IO cost), GLB-VFRM is more
effective than the conventional caching algorithms.

6 CONCLUSION

Effectively leveraging Flash resources in enterprise
storage systems is highly important. Techniques for
best usage of Flash resources should take into ac-
count both performance and the incurred cost for
managing Flash resources. In this paper, we first
designed a new Flash Resource Manager, named to
VFRM, to make a cost-effective use of Flash resources
in the virtual machine environment while reducing
the cost for CPU, Memory, and Flash device IO
bandwidth. Simulation results showed that VFRM
not only outperforms traditional caching solutions
in terms of performance utilization, but also incurs
orders of magnitude lower cost for memory and Flash
device IO bandwidth. In addition, VFRM effectively
avoids cache pollution and eventually yields more
improvement in IO performance. We further devel-
oped an extended version of VFRM which supports
Flash resource management among multiple heteroge-
neous VMs. This global version (GLB-VFRM) divides
Flash into two zones: a private zone is designed
for reserving Flash for each VM in order to cache
their recently accessed working sets, while the public
zone is used to absorb and handle bursty IOs by
being fairly competed among VMs according to their
data popularities. Trace-replay simulations with the
selected MSR-Cambridge IO traces show that GLB-
VFRM obtains IO hit ratios even slightly better than
some of the conventional algorithms as Flash size
increases and meanwhile consumes much less IO
cost for managing Flash resources. In the future, we
plan to adopt a proactive approach to predict the IO

temperature of data blocks. We also plan to apply
VFRM technology to VMware VDI workload and
explore the Flash resource management problem in a
clustering environment in cooperation with VMware
DRS. Moreover, we will also consider other block
IO traces, such as Microsoft Production Server Traces
and FIU Traces, from the SNIA repository to evaluate
the effectiveness of our approaches. Additionally, we
notice that the key idea of our designs can be applied
to non-VM environments as well. Thus, we plan to
refine our Flash resource managers to further support
effective data placement in a non-VM storage cluster.
The file system (instead of VMFS) will be modified to
allow a hybrid file with mixed blocks from different
storage devices. Finally, we will also consider to refine
our GLB-VFRM approach to support the adjustment
of two zone sizes on-the-fly in our future work.

ACKNOWLEDGEMENTS
This work was completed during Jianzhe Tai’s intern-
ship at VMware. This project is partially supported by
NSF grant CNS-1251129 and AFOSR grant FA9550-14-
1-0160.

REFERENCES
[1] Y. Zhou, J. Philbin, and K. Li, “The Multi-Queue Replacement

Algorithm for Second Level Buffer Caches,” in Proceedings
of the 2001 USENIX Annual Technical Conference, Boston, MA,
2001, pp. 91–104.

[2] N. Megiddo and D. Modha, “ARC: A Self-Tuning, Low Over-
head Replacement Cache,” in Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, San Francisco, CA,
2003, pp. 115–130.

[3] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-Side Flash
Caching for the Data Center,” in IEEE 28th Symposium on Mass
Storage Systems and Technologies, Pacific Grove, CA, 2012, pp.
1–12.

[4] C. A. Waldspurger, “Memory Resource Management in
VMware ESX Server,” in Proceedings of the 5th symposium on
Operating systems design and implementation, Boston, MA, 2002,
pp. 181–194.

[5] E. Bugnion, S. Devine, and M. Rosenblum, “DISCO: Running
Commodity Operating Systems on Scalable Multiprocessors,”
in Proceedings of the 6th ACM symposium on Operating systems
principles, 1997, pp. 143–156.

[6] “EMC FAST VP,” http://www.emc.com/collateral/
white-papers/storage-wp.pdf.

[7] “Hitachi Dynamic Tiering Software,” http://www.hds.com/
assets/pdf/hitachi-datasheet-dynamic-tiering.pdf.

[8] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Wald-
spurger, and X. Zhu, “VMware Distributed Resource Manage-
ment: Design, Implementation and Lessons Learned,” VMware
Technical Journal, vol. 1, 2012.

[9] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux
Journal, vol. 124, no. 5, 2004.

[10] “Facebook Flashcache,” https://github.com/facebook/
flashcache.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani, “TAO: Facebook’s Distributed Data Store
for the Social Graph,” in Proceedings of the 2013 USENIX Annual
Technical Conference on ATC’13, San Jose, CA, 2013, pp. 49–60.

[12] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” in Pro-
ceedings of the 1993 ACM SIGMOD international conference on
Management of data, Washington, DC, 1993, pp. 297–306.

14

[13] M. Kampe, P. Stenstrom, and M. Dubois, “Self-correcting LRU
Replacement Policies,” in Proceedings of the 1st conference on
Computing frontiers, Ischia, Italy, 2004, pp. 181–191.

[14] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,” in
Proceedings of the 20th International Conference on Very Large Data
Bases, San Francisco, CA, 1994, pp. 439–450.

[15] D. Lee, J. Choi, J.-H. Kim, S. Noh, S. L. Min, Y. Cho, and
C. S. Kim, “LRFU: A Spectrum of Policies that Subsumes
the Least Recently Used and Least Frequently Used Policies,”
IEEE Transactions on Computers, vol. 50, no. 12, pp. 1352–1361,
2001.

[16] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND Flash
Based Disk Caches,” in Proceedings of the 35th Annual Interna-
tional Symposium on Computer Architecture, Bejing, China, 2008,
pp. 327–338.

[17] T. Pritchett and M. Thottethodi, “SieveStore: A Highly-
selective, Ensemble-level Disk Cache for Cost-performance,”
in Proceedings of the 37th annual international symposium on
Computer architecture, Saint-Malo, France, 2010, pp. 163–174.

[18] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Ran-
gaswami, “Cost Effective Storage using Extent Based Dynamic
Tiering,” in Proceedings of the 9th USENIX Conference on File and
Storage Technologies, San Jose, CA, 2011.

[19] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the
Best Use of Solid State Drives in High Performance Storage
Systems,” in Proceedings of the International Conference on Su-
percomputing, Tucson, Arizona, 2011, pp. 22–32.

[20] “Fusion Drive,” http://en.wikipedia.org/wiki/FusionDrive.
[21] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and R. Ran-

gaswami, “Cost Effective Storage using Extent Based Dynamic
Tiering,” in FAST, 2011, pp. 273–286.

[22] H. Wang and P. J. Varman, “Balancing Fairness and Efficiency
in Tiered Storage Systems with Bottleneck-Aware Allocation,”
in FAST, 2014, pp. 229–242.

[23] C. Albrecht, A. Merchant, M. Stokely, M. Waliji, F. Labelle,
N. Coehlo, X. Shi, and E. Schrock, “Janus: Optimal Flash Pro-
visioning for Cloud Storage Workloads,” in USENIX Annual
Technical Conference, 2013, pp. 91–102.

[24] N. Beckmann and D. Sanchez, “Jigsaw: Scalable Software-
Defined Caches,” in Proceedings of the 22nd international con-
ference on Parallel architectures and compilation techniques. IEEE
Press, 2013, pp. 213–224.

[25] S. Kavalanekar, B. Worthington, Z. Qi, and V. Sharda, “Char-
acterization of Storage Workload Traces from Production Win-
dows Servers,” in Proceedings of the 2008 IEEE International
Symposium on Workload Characterization, Seattle, WA, 2008, pp.
119–128.

[26] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “SRCMap:
Energy Proportional Storage Using Dynamic Consolidation,”
in Proceedings of the 8th USENIX Conference on File and Storage
Technologies, San Jose, CA, 2010.

[27] Y. Zhang, G. Soundararajan, M. W. Storer, L. N. Bairavasun-
daram, S. Subbiah, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Warming Up Storage-Level Caches with Bonfire,”
in Proceedings of the 11th USENIX Conference on File and Storage
Technologies, San Jose, CA, 2013, pp. 59–72.

[28] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-
Loading: Practical Power Management for Enterprise Stor-
age,” ACM Transactions on Storage, vol. 4, no. 3, pp. 10:1–10:23,
2008.

[29] “The Architectural Advantages of Dell Compellent
Automated Tiered Storage,” http://i.dell.com/sites/
content/shared-content/data-sheets/en/Documents/
dell-compellent-tiered-storage.pdf.

[30] “IBM Easy Tier,” http://pic.dhe.ibm.com/easytier.html.
[31] S. B. Vaghani, “Virtual Machine File System,” SIGOPS Oper.

Syst. Rev., vol. 44, no. 4, pp. 57–70, 2010.
[32] S. Bansal and D. S. Modha, “CAR: Clock with Adaptive

Replacement,” in Proceedings of the 2th USENIX Conference on
File and Storage Technologies, vol. 4, 2004, pp. 187–200.

[33] “VMware White Paper: Recommendations for Aligning VMFS
Partitions,” www.vmware.com/pdf/esx3_partition_align.pdf.

[34] “EMC White Paper: VMware ESX Server Using EMC
CLARiiON/Symmetrix Storage Systems Solutions Guide,”
http://www.emc.com/collateral/software/white-papers/
h10630-vmware-vasa-symmetrix-wp.pdf.

[35] “VMware Community Discussion about VMFS Block Size,”
communities.vmware.com/docs/DOC-11920.

Jianzhe Tai is a Software Engineer at MTS-
Core Storage team of VMWare. He obtained
his PhD degree in Computer Engineering
at Northeastern University in 2014. His re-
search interests are Virtualization and Cloud
Management, Multi-tiered Storage Systems,
Operating Systems, Virtual Machine Migra-
tion and Load Balance, Performance Isola-
tion in Virtualized Systems, and Server Con-
solidation.

Deng Liu is currently a software engineer
at Twitter Inc. Before that he was a soft-
ware engineer at VMware Inc. Deng has a
broad research and development experience
in virtuaization, big data, distributed systems,
and highly scalability storage systems. He
received M.S. degree in Computer Science
from the University of Wisconsin-Madison.

Zhengyu Yang is a PhD candidate at the
Northeastern University. He graduated from
the Hong Kong University of Science and
Technology with a M.S. in Telecommunica-
tion in 2011, and he obtained his B.S. in
Communication Engineering from Tongji Uni-
versity in China. His current research area is
mainly on caching algorithm, cloud comput-
ing, deduplication, and performance simula-
tions.

Xiaoyun Zhu is a Staff Engineer in the Cloud
Resource Management group of VMware.
She has worked on the development and per-
formance improvement for VMware’s key re-
source management features including DRS,
DPM, and Storage DRS. Xiaoyun has co-
authored over 50 technical papers in peer-
reviewed journals and conferences, and
holds over 20 patents. Xiaoyun received her
B.S. in Automation from Tsinghua University
in China, and her M.S. and Ph.D. in Electrical

Engineering from California Institute of Technology.

Jack Lo is an Vice President of R&D of
Core Storage and Availability VMware. He
manages the Core Storage and Availability
R&D team, responsible for vSphere storage
technologies (file system, storage stack, stor-
age management, etc.) and availability (HA,
fault tolerance, replication, and backup). Pre-
viously he has managed the virtual machine
platform and CPU virtualization teams at
VMware.

Ningfang Mi is an Assistant Professor at
Northeastern University, Department of Elec-
trical and Computer Engineering, Boston.
She received her Ph.D. degree in Com-
puter Science from the College of William
and Mary, VA in 2009. She received her
M.S. in Computer Science from the Uni-
versity of Texas at Dallas, TX in 2004 and
her B.S. in Computer Science from Nan-
jing University, China, in 2000. Her cur-
rent research interests are capacity planning,

MapReduce/Hadoop scheduling, cloud computing, resource man-
agement, performance evaluation, workload characterization, simu-
lation and virtualization.

