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Abstract—Recently, adoption of Flash based devices has be-
come increasingly common in all forms of computing devices.
Flash devices have started to become more economically viable
for large storage installations like datacenters, where metrics like
Total Cost of Ownership (TCO) are of paramount importance.
Flash devices suffer from write amplification (WA), which, if
unaccounted, can substantially increase the TCO of a storage
system. In this paper, we develop a TCO model for Flash storage
devices, and then plug a Write Amplification (WA) model of
NVMe SSDs we build based on empirical data into this TCO
model. Our new WA model accounts for workload characteristics
like write rate and percentage of sequential writes. Furthermore,
using both the TCO and WA models as the optimization criterion,
we design new Flash resource management schemes (MINTCO) to
guide datacenter managers to make workload allocation decisions
under the consideration of TCO for SSDs. Experimental results
show that MINTCO can reduce the TCO and keep relatively high
throughput and space utilization of the entire datacenter storage.

Keywords—Flash Resource Management, Total Cost of Owner-
ship Model, SSD Write Amplification, NVMe, Wearout Prediction,
Workload Sequentiality Pattern

I. INTRODUCTION

The world has entered the era of “Big Data”, when large
amount of data is being collected from a variety of sources,
including computing devices of all types, shapes and forms.
This data is then being pushed back to large, back-end data-
centers where it is processed to extract relevant information.
As a result of this transformation, a large number of server-
side applications are becoming increasingly I/O intensive. Fur-
thermore, with the amount of data being gathered increasing
with every passing day, the pressure on the I/O subsystem will
continue to keep on increasing [1].

To handle this high I/O traffic, datacenter servers are being
equipped with the best possible hardware available encompass-
ing compute, memory, networking and storage domains. Tra-
ditionally, I/O has been handled by hard disk drives (HDDs).
HDDs have the benefit of providing an excellent economic
value ($/GB), but being built with mechanical, moving parts,
they suffer from inherent physical throughput limitations,
especially for random I/Os. To counter these performance
limitations, solid state devices (SSDs) have recently begun to
emerge as a viable storage alternative to HDDs. In the recent
past, SSDs have gained widespread adoption owing to reduced
costs from the economies of scale. Datacenters, especially
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popular public cloud providers (e.g., [2], [3]) have been at
the forefront of adopting Flash technology.

Nevertheless, during this revolutionary change in cloud
storage systems, Flash based SSDs face two major concerns:
cost and write amplification (WA). Firstly, the costs of owning
(purchasing and maintaining) SSDs can still be very high.
Balancing the trade-off between performance and economy
is still an uphill battle. Currently, Total Cost of Ownership
(TCO), comprising of two major costs: (i.e., Capital and
Operating Expenditures), remains a popular metric. However,
only a few prior studies have focused on the TCO of SSDs
in datacenters, especially with the consideration of the cost of
SSD’s wearout.

Secondly, SSDs have limited write cycles and also suffer
from Write Amplification (WA) which is caused by a number
of factors specific to Flash devices including erase-before-
rewrite, background garbage collection, and wear leveling. In
fact, the WA of an SSD is a direct function of the I/O traffic
it experiences. The I/O traffic, in turn, comprises of a number
of different factors like the fraction of writes (as opposed to
reads), the average size of I/O requests, the arrival rate of I/Os,
and the ratio of sequential I/O patterns (as opposed to random
I/O) in the overall I/O stream. Greater WA can significantly
reduce the lifetime and increase the ownership cost of Flash
devices.

Therefore, in this work, we focus on addressing the above
two concerns by investigating the relationship between work-
load patterns and WA and then leveraging the relationship
to develop new TCO models. In our experiments, we found
that workloads with different sequential ratios have varying
write amplifications even on the same SSD, which changes
the lifetime of the device and eventually affects the TCO. We
are thus motivated to evaluate storage systems from a cost per-
spective that includes many dimensions such as maintenance
and purchase cost, device wearout, workload characteristics,
and total data amount that can be written to the disk, etc.
Therefore, in this paper, we make the following contributions
to achieve this goal.
• We conduct real experiments to measure and characterize

the write amplification under different workloads, and reveal
the relationship between write amplification and workload
sequential ratio for each disk with fixed Flash Translation
Layer(FTL) specs.
• We propose a new TCO model while considering multiple

factors like SSD lifetime, workload sequentiality, write
wearout and the total writes.
• We propose statistical approaches for calculating compo-
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(practically) be measured from SSDs during runtime, such
as write amplification and wearout of each SSD.

• Based on our TCO model, we develop a set of new on-
line adaptive Flash allocation managers called “MINTCO”,
which leverage our TCO model to dynamically assign
workloads to the SSD disk pool. The goals of MINTCO are:
(1) to minimize the TCO, (2) to maximize client throughput
as many as possible, and (3) to balance the load among SSD
devices and best utilize SSD resources.
Lastly, we evaluate our new models and approaches using

real world trace-driven simulation. Our experimental results
show that MINTCO can reduce the TCO by up to 90.47%
compared to other traditional algorithms. Meanwhile, it guar-
antees relatively high throughput and spatial utilization of the
entire SSD-based datacenter.

The remainder of this paper is organized as follows. Sec. II
investigates the cause of write amplification on SSDs. Sec. III
presents the details of our TCO models. Sec. IV proposes
two versions of our MINTCO allocation algorithms. Sec. V
measures the WAF of NVMe disks under different workload
patterns, and evaluates our allocation algorithms. Sec. VI de-
scribes the related work. Finally, we summarize the paper and
discuss the limitations and future work plan of this research
in Sec. VII.

II. WRITE AMPLIFICATION FACTOR

Write amplification factor (“WAF ”, henceforth referred
to as “A” and “WA”) is a commonly used metric to mea-
sure the write amplification degree. WAF is an undesirable
phenomenon associated with Flash devices where the actual
amount of data written to the device is larger than the logical
amount of data written by a workload. We define WAF as the
ratio between the total physical write data written by the SSD
and the total logical data written by the workload: A = WP

WL
,

where WL denotes the logical write amount (in bytes) and
WP denotes the physical, device-level I/O writes as seen by
the SSD. Fig. 1 illustrates the logical and physical writes all
the way from the application, through the OS, to the SSD.
Large values of A lead to increase I/O latency, shorten the
SSD’s working lifetime, and increase power consumption.

Flash devices have an unique property that they cannot
be re-written unless they have been erased. Also, the min-
imum granularity of an erase operation is in the order of
MBs (e.g., blocks), while the granularity of writes is much
smaller, in the order of KBs (e.g., pages). Meanwhile, Flash
devices have limited write life cycles. Thus, for the purpose
of wear-leveling, the logical address space in Flash devices
is dynamically mapped to the physical space and the mapping
changes with every write. Flash devices have a software called
FTL (Flash Translation Layer) running on them to manage
the erase before re-write and wear-leveling requirements. The
FTLs have to schedule periodic garbage collection events to
de-fragment their write data. These garbage collection events
can lead to extra writes that have not been generated by the
host. Additionally, SSD reserves a user-invisible space (i.e.,
over-provision), which is helpful to reduce the WAF during
these above-mentioned events to some extent. However, since
Flash devices have limited write-erase cycles, the mismatch
between the two (logical and physical) types of writes can still
cause the SSD to fail much more quickly than expected. On the
other hand, besides these device hardware-related factors, write
amplification is also affected by I/O workload-related factors,
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Fig. 1: An example of I/O Path from OS to device.

such as mounted file systems and workload traffic patterns. In
this paper, the scenario we are investigating is that all hardware
specs of SSDs are fixed in the datacenter after deployment, and
we are not aiming to change their FTL algorithms. Therefore,
we mainly focus on the impact of different workload patterns
to the WAF under SSDs.

The existing analytical models [4], [5] for WAF build
the relationship between workload characteristics and WAF
based on the different garbage collection policies (i.e., cleaning
algorithms) and the impacts of the hot and cold data distribu-
tion. However, these models ignore a factor that is becoming
increasingly important, especially in the NoSQL database
community, traffic patterns in terms of sequential and random
ratio experienced by the SSD [6]. With the proliferation of
log structured merge tree (LSM tree) based NoSQL databases,
there is a lot of uptick in the amount of sequential traffic being
sent to the SSDs. LSM-tree based databases capture all the
writes into a large in-memory buffer. When the buffer is full,
it is flushed to disk as a large multi-gigabyte sequential write.
Another similar case is write-intensive workloads that execute
within virtual machines – most of the write traffic to the SSD
is usually sent out as large, sequential writes [7]. Hence, it
is becoming increasingly essential to understand the WAF,
performance of SSDs, device worn-out, and most importantly,
the total owning cost of datacenters from a workload-centric
view.

III. TCO MODELS OF SSD-INTENSIVE DATACENTERS

TCO of a datacenter is a mix of a large number of
items. Broadly speaking, these items can be broken down
into two major categories: (1) Capital Expenditure (CapEx),
and (2) Operating Expenditure (OpEx). Capital Expenditure
refers to the amount of money that needs to be spent in
setting up a facility. These include the cost of buying individual
components of the servers, power supplies, racks that house the
servers, among other things. OpEx, on the other hand, is the
amount of money that is spent in the day-to-day operation of a
datacenter. Examples of OpEx include electricity costs and per-
sonnel costs (required for maintaining the datacenter). CapEx
is traditionally a large, one time expenditure [8] while OpEx
consists of small(er), recurring expenditures. In this section, we
develop a TCO model for an SSD intensive datacenter of the
future, based on the characteristics of the workloads that are
scheduled on to those SSD devices. Our TCO model focuses
specifically on the costs related to acquiring and maintaining
SSDs in a datacenter.
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Fig. 2: Model of a datacenter storage system.
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Fig. 3: An example of write wearout count estimation.

A. Datacenter Storage Model
First, we briefly explain our assumptions about datacenters,

their workloads and storage systems. We assume the datacenter
to be a large pool of SSD devices. This helps us abstract
the problem of modeling SSDs from a per-server resource
to a pool of datacenter-wide resources. We then model the
storage system of such a datacenter as a workload-to-disk
allocation problem, as shown in Fig. 2. In this model, we
have a pool of ND SSDs as shown in Fig. 2. Meanwhile,
there are NW applications (workloads) that submit I/O requests
with logical write rates λLJi

(where 1 ≤ i ≤ NW , and “LJ”
stands for “logical” and “job”), as seen in the left hand box
of Fig. 2. To complete the connection between I/O requests
and the SSDs, we assume an allocation algorithm that is
used by the dispatcher to assign I/O workloads to different
SSDs. Each workload has its own characteristic, and arrives
at the dispatcher at different times. Multiple workloads can be
assigned to the same disk as long as the capacity (e.g., space
and throughput) of the disk is sufficient, such that the logical
write rate (λLi

) to disk i is the summation of logical write
rates from the workloads in the set Ji that are allocated to
that SSD, i.e., λLi

=
∑
j∈Ji λLJj

. We summarize our main
assumptions as follows.

1) I/O streams with certain properties: “Workload” is
defined as an endless logical I/O stream issued by applications.
Particularly, from a long-term view (e.g., years), characteristics
of workloads, such as sequential ratio, daily write rate, read-
write ratio, working set size, re-access ratio, can be abstracted
as (almost) fixed values. Workloads may arrive to the datacen-
ter at different times. Once a workload arrives, the dispatcher
assigns it to a certain disk, and the disk will execute this
workload until the disk is “dead” (i.e., SSD write cycle limit
is reached), or the workload finishes. We ignore the overhead
(such as time and energy consumption) during the workload
deployment.

2) Isolation among multiple workloads on a single disk:
Multiple workloads can be assigned to a single SSD, and have
separate and independent working sets (i.e., address spaces and
segments are isolated). Therefore, the cross-workloads effects
along I/O path due to interleaving working sets are negligible.

3) SSD, as an blackbox, can be reflected by WA: We
use the WA model to capture the behavior of an SSD under
a workload with a specific I/O pattern. Thus, we estimate
the WAF of each disk by using the sequentiality information
of multiple workloads that are concurrently executing at a
particular SSD. The write wearout of each SSD can further
be estimated using the runtime status of that SSD’s WA.

B. TCO Model
Owning and maintaining a low cost SSD-intensive data-

center is critically important. TCO has been widely adopted
to evaluate and assess storage subsystem solutions. However,
to the best of our knowledge, there is no standard formula for
calculating the TCO of the SSD-intensive storage subsystem.
In order to comprehensively access the expenditure of a
datacenter, a generic TCO model should consider purchasing
and maintenance costs, service time, served I/O amount and
device wearout. We present the following models to calculate
the TCO. As we mentioned, two major types of costs: CapEx
(CIi ) and OpEx (CMi

) are considered in the basic TCO
model. In detail, CIi = CPurchasei + CSetupi and C ′Mi =
C ′Poweri + C ′Labori , where CPurchasei and CSetupi are one-
time cost ($) of device purchase and device setup, and C ′Poweri
and C ′Labori are power and maintenance labor cost rate ($/day).
Although CapEx (C ′Ii ) is one time cost, OpEx (C ′M ) is a daily
rate and the TCO should be depends on the amount of time
that an SSD has been used. Therefore, we need to attach a
notion of time to TCO. Assume we know the expected life
time (TLfi

) of each disk (i.e., TLfi
= TDi

− TIi , where TDi

and TIi are the time when the disk i is completely worn out
and the time when it was started accepting its first request,
respectively), the total cost for purchasing and maintaining a
pool of SSDs can be calculated as:

TCO =

ND∑
i=1

(CIi + C ′Mi
· TLfi), (1)

where ND is the number of disks in the pool. Fig. 4(a)
also illustrates an example from time stamp view, where I/O
workloads keep arriving and thus the physical write rate of
disk i increases accordingly. However, Eq. 1 does not reflect
SSD wearout at all, which is highly coupled with the workload
arrival distribution. For instance, in a datacenter consisted of
the same type of SSDs, the SSD running workloads with the
lowest physical write rate may always have the highest TCO
value (i.e., its C ′Mi

·TLfi is the greatest among all) according to
Eq. 1, since this SSD is probably the last one to be worn out.
However, this SSD may have a larger WAF due to the workload
pattern, while others that died earlier may have smaller WAFs
and can serve more logical write I/O amounts under the same
cost. Therefore, to conduct a fair and meaningful comparison,
we introduce the data-averaged TCO rate (TCO′) from the
perspective of the cost vs. the total amount of (logical) data
served (written) to an SSD as follows.

TCO′ =

∑ND

i=1 (CIi + C ′Mi
· TLfi

)∑NW

j=1Dj

, (2)

where
∑NW

j=1Dj is the total logical data write amount for all
NW workloads. Again, we use logical writes as a proxy for
physical writes not only because the former is much easier
to obtain for most workloads, but also because by being
normalized by the logical writes, the TCO′ is able to reflect
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Fig. 4: Examples of physical write rates vs. workload arrivals.

the WAF and judge the disk-level wear leveling performance
of different allocation algorithms.

C. Calibrating TCO Models
The models developed in the prior section have all assumed

that certain parameters for TCO calculation (e.g., total logical
data write amount, expected lifetime, etc.) are readily available
or measurable. However, it is impractical to measure some
parameters that are necessary in our TCO models. In this
section, we propose a mathematical approach of estimating
those unmeasurable parameters.

1) Total Logical Data Writes
∑NW

j=1Dj: Given workload
j’s logical write rate λLj

, arrival time TAj
and estimated time

of death (TD(j)) of workload j ’s host disk D(j), we can cal-
culate the total amount of data written by all the jobs over their
course of execution as:

∑NW

j=1Dj =
∑NW

j=1 λLj (TD(j) − TAj ),
where λLj

is the logical data write rate of workload j. The
only unknown parameter left is TD(j), which can be obtained
by calculating each host disk’s expected lifetime.

2) Expected Lifetime TLfi
: The lifetime of a disk depends

not only on the write traffic from the currently executing jobs,
but also on those jobs that have already been deployed on the
disk. Furthermore, we also need to account for the effects of
the combined write traffic of the workloads that are concur-
rently executing on a disk. As shown in Fig. 4(a), the lifetime
of disk i is the period from TIi to TDi

. We further split the
lifetime into two phases: (1) accumulated work epoch (TWi

)
until the last workload arrives, i.e., TWi

= TRi
− TIi , where

TRi
is the assigned time of the most recent workload; and (2)

expected work lifetime (TEi
) from TRi

to the expected death
time, i.e., TEi

= TDi
− TRi

. The former is easy to monitor,
and the latter is further estimated as the available remaining
write cycles of disk i divided by the physical data write rate
(λPi ) of disk i from TRi. Moreover, λPi can be calculated as
disk i’s logical data write rate (λLi ) times disk i’s WAF (Ai).
Thus, we have TLfi

= TDi−TIi = TWi+TEi = (TRi−TIi)+
Wi−wi

λPi
= (TRi

− TIi) + Wi−wi

λLi
·Ai

= (TRi
− TIi) + Wi−wi

λLi
·fseq(Si)

,
where Ai, Wi, wi and Si are the WAF function, the total
write limit, current write count (wearout), and sequential ratio
of all running workloads of disk i, respectively. Since the
SSDs’ hardware are fixed, we denote Ai as a function of
workload’s write I/O sequential ratio (fseq) of disk i, which
will be validated and regressed in our experimental section
(Sec. V-A5). In fact, we can plug any WAF model into this
TCO model. As of now, we also know TRi , TIi and Wi, and
what we need to estimate next are the remaining parameters,
i.e., λLi

, Si and wi.

3) Logical Write Rate of Workloads on Disk λLi
: For disk

i, its logical write rate λLi
should be the sum of all its assigned

workloads’ logical write rates, i.e., λLi
=
∑
j∈Ji λLij

, where
Ji is the set of workloads running on disk i. Notice that

there is an extreme case during the very early stage where no
workloads have been assigned to the disk i (i.e., Ji = ∅), such
that Wi−wi

λLi
·fseq(Si)

becomes infinite. To avoid such an extreme
case, we conduct a warming up process that assigns at least
one workload to each disk. Only after this warming up phase
is done, we start to calculate TLfi .

4) Sequential Ratio of Workloads on Disk Si: In order
to calculate the write amplification Ai in Sec. III-C2, we
need to know the sequential ratio of multiple workloads that
are assigned to one disk. Unlike the logical write rate, the
combined sequential ratio of multiple workloads is not equal
to the sum of sequential ratios of all workloads. Our estimating
solution is to assign a weight to each workload stream’s
sequential ratio and set the weight equal to the workload’s
logical data write rate. Hence, for multiple workloads running
on the disk, we can calculate the overall sequential ratio as:
Si =

∑
j∈Ji

λLij
Sij∑

j∈Ji
λLij

. where λLij and Sij are the logical write
rate and sequential ratio of jth workload running on disk i.

5) Write Wearout Count of Disk wi: The last item we
need to estimate is the current physical write count wi (in
Sec. III-C2) inside each SSD device. It is hard to exactly
measure the overall write count of an SSD during its lifetime.
However, we can estimate the current write count by adding
the estimated write counts of all the workloads over all past
epochs. For each epoch, we multiply the total logical write rate
by the corresponding WAF to get the physical write rate. By
iterating this process for all epochs, we can finally get the total
write wearout count for each disk. Fig. 3 shows a simple exam-
ple of estimating a disk’s write wearout when there are multiple
workloads executing on disk i. Each brink represents an epoch,
which is bounded by its workloads’ allocation times. The vol-
ume of all these brinks gives the total write wearout count (wi)
for disk i. To calculate wi, we further convert above-mentioned
λLi

and Si to the total logical data write rate function and
the sequential ratio function during each epoch [tix, ti(x+1)),
respectively: λLi

(tix, ti(x+1)) =
∑
j∈Ji(tix,ti(x+1))

λLij
, and

Si(tix, ti(x+1)) =

∑
j∈Ji(tix,ti(x+1))

λLij
Sij∑

j∈Ji(tix,ti(x+1))
λLij

, where x is the

number of workloads executing on disk i, and tix is the arrival
time of disk i’s xth workload. Ji(tix, ti(x+1)) is the set of
workloads running on disk i during tix and ti(x+1) epoch. λLij

and Sij are the write rate and sequential ratio of jth workload
in Ji(tix, ti(x+1)). Therefore, wearout wi can be calculated
as: wi =

∑
tix∈Ti

[λLi
(tix, ti(x+1)) · fseq(Si(tix, ti(x+1))) ·

(ti(x+1) − tix)]. Here, tix is the starting time of disk i’s xth
epoch. At the sample moment ti(x+1), we assume there are
x workloads running on disk i. Ti is the set of arrival times
of each work running on disk i. The three parts (λ, WAF
and time) match the three axes from Fig. 3, where each brink
stands for each epoch, and the total volume of these brinks is



the accumulated write count value of that SSD disk. Therefore,
TCO′ in Eq. 2 can be calibrated as

TCO′ =

∑ND

i=1 [CIi + C ′Mi
(TWi

+ Wi−wi

λi·Ai
)]∑NW

j=1 λj(TLfD(j)
− TIj )

. (3)

IV. ALLOCATION ALGORITHMS: MINTCO
Based on the proposed TCO model, we further design a

set of online allocation algorithms, called “MINTCO”, which
adaptively allocate new workloads to SSDs in the disk pool.
The main goal is to minimize the data-avg TCO rate (TCO′)
of the storage pool and meanwhile to conduct disk-lever wear
leveling during workload deployment and allocation.
A. Baseline minTCO

The main functionality of the baseline version of MINTCO
follows these steps: when a new workload arrives, MINTCO
calculates the data-avg TCO rate for the entire disk pool, and
then allocates the workload to the SSD that makes the lowest
data-avg TCO rate of the entire dis pool. Specifically, there
are two cases during the calculation of expected lifetime and
total logical write amount. The first case is that when a new
workload is assigned to disk k, we use this new workload’s
arrival time as the boundary between TWk

and TEk
phases,

as shown in Fig. 4(c). The second case is that when the
new workload is not assigned to disk k, we use TRk

(the
arrival time of the most recent workload on disk k) as the
boundary between TWk

and TEk
phases, as shown in Fig. 4(b).

As discussed previously, our TCO model is compatible with
any WAF models. Here we adopt the WAF model described
in Eq. 3 to implement our prototype. The baseline MINTCO
also needs to consider other resource constraints. For example,
MINTCO needs to further check if the available spatial and
throughput capacities of the chosen SSD are large enough to
hold the new workload’s working set. If not, MINTCO moves
to the next SSD which has the second lowest data-avg TCO
rate. If no disks have enough capacity, then the workload will
be rejected.
B. Performance Enhanced minTCO

One limitation of the baseline MINTCO is that it does
not balance the load across the SSDs in the pool and thus
cannot achieve optimal resources utilization. However, best
using of resources (e.g., I/O throughput and disk capacity) is an
important goal in real storage system management. To address
this limitation, we further develop the performance enhanced
manager, namely MINTCO-PERF, which considers statistical
metrics (i.e., load balancing and resource utilization) as the
performance factors in workload allocation.

1) System Resource Utilization: We consider two types of
resources, throughput (IOPS) and space capacity (GB), and
calculate the utilization (U(i, k)) of disk i when disk k is
selected to serve the new workload JN , as:

U(i, k) =

{
RU (i)
R(i) , i 6= k
RU (i)+R(JN )

Ri
, i = k

, (4)

where RU (i), R(i) and R(JN ) represent the amount of used
resource on disk k, the total amount of resource of disk i, and
the resource requirement of workload JN , respectively. When
i is equal to k, we have the new requirement (i.e., R(JN ))
as extra resources needed on that disk. This equation can be
used to calculate either throughput utilization (i.e., Up(i, k)) or

space capacity utilization (i.e. Us(i, k)). The average utilization
can be calculated to represent the system utilization of the

entire disk pool: U(k) =
∑ND

k=1 U(i,k)

ND
. Our goal is to increase

either average throughput utilization (i.e., Up(i, k)) or average
space utilization (i.e. Us(i, k)).

2) Load Balancing: We use coefficient of variation (CV )
of throughput (or space) utilizations among all disks to assess
the load balancing. Specifically, when assigning the workload
JN to disk k, we calculate expected CV (k) as: CV (k) =√∑ND

i=1
[U(i,k)−U(k)]2

ND

U(k)
. A smaller CV (k) indicates better load

balancing in the datacenter.
Then, we have our MINTCO-PERF algorithm which aims

to minimize the data-avg TCO rate, while achieving best re-
source utilization and load balancing among disks. MINTCO-
PERF uses an optimization framework to minimize the objec-
tive function under constrains listed in Eq. 5.

Minimize:
f(Rw) · TCO′(k)
− gs(Rr) · Us(k) + hs(Rr) · CVs(k)
− gp(Rr) · Up(k) + hp(Rr) · CVp(k)

Subject to:
i ∈ D, k ∈ D
0 ≤ TCO′(i, k) ≤ Thc
0 ≤ Us(i, k) ≤ Ths
0 ≤ Up(i, k) ≤ Thp (5)

Upon the arrival of a new workload JN , we calculate the
“enhanced cost” of the the disk pool. The object function
in Eq. 5 contains the TCO rate cost (f(Rw) · TCO′(k)),
the resource utilization reward (gs(Rr) · Us(k) and gp(Rr) ·
Up(k)), and the load unbalancing penalty (hs(Rr) · CVs(k)
and hp(Rr) · CVp(k)). Notice that TCO′(k) and TCO′(i, k)
represent the TCO rate of the entire disk pool and the TCO
rate of disk i, respectively, when disk k is selected to take
the workload. Non-negative parameters in Eq 5 (e.g., f(Rw),
gs(Rr), gp(Rr), hs(Rr) and hp(Rr)) are the weight functions
that are related with the read ratio (Rr = readIO#

totalIO# ) and write
ratio (Rw = writeIO#

totalIO# ) of workloads. Finally, the disk with the
lowest enhanced cost will be selected for the new workload.
The reason behind is that in the real world, write intensive
workloads affect WAF and TCO, and read intensive workloads
are sensitive to load balancing degree. In addition, Thc, Ths
and Thp are used as the upper bounds for TCO, space and
throughput resources utilization ratios, respectively.

V. EVALUATION
A. Write Amplification Measurement and Modeling

1) Hardware Testbed: Most SSD vendors do not provide
APIs or performance counters to measure this physical write
quantity. Hence, many prior studies (e.g., [4], [5]) have tried
to develop models for estimating the WAF of an SSD based
on a certain criterion. In this paper, we propose to leverage the
data directly measured from SSDs to calculate a WAF function
for an SSD. Our goal is to characterize the effects of write
traffic from multiple workloads on the WAF, and see if such a
characterization can be generalized as a mathematical model.
Table. I shows the testbed specification. Fig. 5(a) further
illustrates the workflow of our measurement experiments.
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Fig. 5: Test workflow and WAF measurement results.

2) Filesystem: We test two representative scenarios: “for-
matting with no file system” and “formatting with Ext4 file
system”. (1) “No file system” mimics the use case like a
swap partition, where avoiding a filesystem mainly has three
advantages: making more of the disk usable, since a filesystem
always has some bookkeeping overhead; making the disks
more easily compatible with other systems (e.g., the tar file
format is the same on all systems, while filesystems are differ-
ent on most systems.); and enabling enterprise user to deploy
customized block manager running on the hypervisor without
mounting a traditional filesystem. (2) “Ext4 file system” is a
very solid file system which has been widely used for SSDs
in datacenters using linux distributions for the past few years.
The journaling that comes with Ext4 is a very important feature
for system crash recovery although it causes some acceptable
write activity.

TABLE I: Server node configuration.
Component Specs

Processor Xeon E5-2690, 2.9GHz
Processor Cores Dual Socket-8 Cores

Memory Capacity 64 GB ECC DDR3 R-DIMMs
Memory Bandwidth 102.4GB/s

RAID Controller LSI SAS 2008
Network 10 Gigabit Ethernet NIC

Operating system Ubuntu 12.04.5
Linux Kernel 3.14 Mainline
FIO Version 2.1.10 run with direct I/O
Storage Type NVMe SSD (Released in 2014)

Storage Capacity 1.6 TB

3) Precondition: In order to ensure the SSD in the same
state and stimulate the drive to the same performance state at
the beginning of each measurement, we also conduct a 9 hour
“preconditioning process”. In detail, we have the following
operations: “Sequential precondition” is that between each
measurement, the SSD is completely fulfilled with sequentially
I/Os, so that all write I/Os in the measurement workloads are
overwrite operations, and WAF results will not be independent
on garbage collection. “Random precondition” will further
conduct an additional completely overwrite to the device
with randomly I/Os with 4KB granularity after the sequential
precondition process to randomize the workset distribution.
“Rnd-Rnd/Seq-Seq precondition” is the policy that we use the
random and sequential precondition for non-100% sequential
and 100% sequential I/O workloads, respectively. We attempt
to use these workloads to observe the ideal write performance
(i.e., steady write performance). These two precondition oper-
ations can help us simulate different scenarios.

4) I/O Workloads: In order to study the effects of sequen-
tial traffic on WAF, we conduct an experiment that can control
the amount of sequential traffic being sent to an SSD. Most
workloads in real systems are a certain mixture of sequential
and random I/Os. To mimic such real situations, we generate
mixed workloads by using an I/O testing tool FIO [9]. We

also make changes to an 1.6TB NVMe SSD firmware to
parse the value of (page) program and (block) erase counters.
We investigate the write amplification factor as the ratio of
sequential and random accesses, and the changes of these
counters, as shown as “delta” in Fig. 5(a).

5) WAF Results and Modeling: Fig. 5(b)-(d) show three
representative cases from our WAF experimental results, which
present the normalized WAF as a function of different sequen-
tial ratios on write I/Os. The WAF data points are normalized
by the largest WAF across different workload sequential ratios
(e.g., the WAF under 40.22% sequential ratio in Fig. 5 (b)).
Thus, the original WAF is ∈ [1,+∞), while the normalized
WAF is ∈ [0, 1]. First, we can see that WAF curves in the
three figures are similar, i.e., the curves can be regressed into
two stages: a flat linear regression stage and a dramatically
decreasing polynomial regression stage. The former part shows
that the write amplification factor of mixed workloads is almost
identical to that of a pure random workload and keeps almost
constant before a turning point (around 40% to 60%). But,
after this turning point, the WAF dramatically decreases. In
other word, a small fraction of random accesses is necessary
to intensify the write amplification factor. We further regress
the WAF (A) as a piecewise function of sequentiality of I/O
operations in the workload as shown in Eq. 6, where α, β, γ,
µ and ε are parameters, and S is the sequential ratio.

A = fseq(S) =

{
αS + β, S ∈ [0, ε]

ηS2 + µS + γ, S ∈ (ε, 1]
(6)

At the turning point S = ε, we have αε+ β = ηε2 +µε+ γ.
Additionally, α is close to zero since the linear regression stage
is relatively smooth. We carry out these experiments multiple
times on a number of similar devices, and draw our conclusions
as follows. We believe that such a mathematical model of
sequential write traffic vs. WAF can be constructed for most
devices, and each SSD can have its own unique version of
WAF function, depending on a number of their hardware-
related factors (FTL, wear leveling, over-provisioning etc.).
However, being able to regress a mathematical model for the
problem forms the basis of the rest of this paper. Additionally,
we also observe that the regression turning point of the non-
filesystem case (Fig. 5(b)) comes earlier than Ext4’s (Fig. 5(c)
and (d)). This validates the fact that Ext4’s (bookkeeping)
overhead is heavier than the raw disk. Moreover, when the
sequential ratio is 100%, the WAF under “Rnd-Rnd/Seq-Seq
precondition” case (Fig. 5(d)) is lower than that under the “All-
Rnd precondition” case (Fig. 5(c)). This validates that in the
former case, the steady write performance can be reached.

B. TCO Evaluation
1) Benchmarks and Metrics: In this section, we plug the

WAF model regressed from the real experiments to our TCO



0.49
0.44

0.33 0.36
0.43 0.44

0.59

0.46 0.48
0.41 0.39

0.34

0.22

0.11 0.11 0.11 0.12 0.14

0.00

0.13

0.26

0.39

0.52

0.65

minTCO minTCO-Perf 
[1,1,1,1,1]

minTCO-Perf 
[3,1,1,1,1]

minTCO-Perf 
[1,2,2,1,1]

minTCO-Perf 
[5,1,1,2,2]

minTCO-Perf 
[5,1,1,3,3]

0.45

0.12

0.53

0.84

1.13

0.46

0.72

0.490.49 0.54
0.46

0.70

0.91

0.51

0.68
0.59

0.20
0.28 0.27

0.35

0.63

0.32
0.40

0.22

0.00

0.18

0.36

0.54

0.72

0.90

1.08

random minWorkload minRate minWAF maxRemCycle minTCO-v1 minTCO-v2 minTCO-v3

14.21 16.10 11.57

29.49

100.00

10.20

32.45

9.53
1.22 1.21 1.23 1.19 1.17 1.21 1.18 1.21

79.70 77.75 81.68 78.48

64.70

81.62
75.22

82.54

0

25

50

75

100

random minWorkload minRate minWAF maxRemCycle minTCO-v1 minTCO-v2 minTCO-v3

62.91
73.14

67.33

100.00

67.07 66.62

1.21 1.21 1.20 1.18 1.20 1.20

82.54 84.63 86.24 81.21
87.63 89.67

0

28

55

83

110

minTCO minTCO-Perf 
[1,1,1,1,1]

minTCO-Perf 
[3,1,1,1,1]

minTCO-Perf 
[1,2,2,1,1]

minTCO-Perf 
[5,1,1,2,2]

minTCO-Perf 
[5,1,1,3,3]

(a) minTCO: Cost and Resource Utilization.                                                                            (b) minTCO: Load Balancing Related Results.

◼ NormTCOPerGB ◼ AvgThruptUtilRatio ◼ AvgCapacityUtilRatio ◼ CV of WorkloadNum ◼ CV of ThruptUtilRatio ◼ CV of CapacityUtilRatio

(c) minTCO-Perf: Cost and Resource Utilization.                                                                   (d) minTCO-Perf: Load Balancing Related Results.

Fig. 6: TCO, resource utilization, and load balancing results under MINTCO and MINTCO-PERF.

model, and then evaluate our MINTCO algorithms. Our trace-
driven simulation experiments are conducted based on the spec
of real NVMe disks and enterprise I/O workloads. Specifically,
we evaluate more than one hundred enterprise workloads from
UMass [10], MSR-Cambridge and FIU [11] trace repositories.
These workloads represent applications widely used in real
cloud storage systems, such as financial applications, web mail
servers, search engines, etc.

Table II shows the statistics for some of these workloads
(out of more than 100 workloads that we are using), where S
is the sequential ratio of write I/O (i.e., the ratio between the
amount of sequential write I/Os and the amount of total write
I/Os), λ is the daily logical write rate (GB/day), PPk is the
peak throughput demand with the 5min statistical analyses
window, RW is the write I/O ratio (i.e., the ratio between
the amount of write I/Os and the amount of total I/Os),
and WSs is the workings set size (i.e., the spatial capacity
demand). The arrival process of these workloads is drawn from
an exponential distribution. We use the following metrics to
evaluate our MINTCO algorithms: (1) cost per GB during the
expected lifetime: the total logical data-averaged TCO during
the expected lifetime (TCO′LfPerData); (2) resource utiliza-
tion: the average throughput and space capacity utilization
ratios among all disks; and (3) load balancing: the CV of
resource utilization ratio across all disks.

TABLE II: Statistics for part of I/O workloads we use.
Trace S λ PPk RW WSs
Name (%) (GB/day) (IOPS) (%) (GB)
mds0 31.52 21.04 207.02 88.11 6.43
prn0 39.13 131.33 254.55 89.21 32.74
proj3 72.06 7.50 345.52 5.18 14.35
stg0 35.92 43.11 187.01 84.81 13.21
web0 34.56 33.35 249.67 70.12 14.91
hm1 25.15 139.40 298.33 90.45 20.16
hm2 10.20 73.12 77.52 98.53 2.28
hm3 10.21 86.28 76.11 99.86 1.74
onl2 74.41 15.01 292.69 64.25 3.44
Fin1 35.92 575.94 218.59 76.84 1.08
Fin2 24.13 76.60 159.94 17.65 1.11
Web1 7.46 0.95 355.38 0.02 18.37
Web3 69.70 0.18 245.09 0.03 19.21

2) TCO Experimental Results: We implement both base-
line MINTCO and the performance enhanced MINTCO-
PERF. Additionally, three versions of MINTCO are consid-

ered, such that MINTCO-v1 uses the TCO of expected life-
time (

∑ND

i=1 (CIi + C ′Mi
· TLfi)), MINTCO-v2 uses the TCO

model of expected lifetime per day (
∑ND

i=1 (CIi
+C′Mi

·TLfi
)∑ND

i=1 TLfi

), and

MINTCO-v3 uses the TCO model of expected lifetime per

GB amount (
∑ND

i=1 (CIi
+C′Mi

·TLfi
)∑NW

j=1 Dj

). As expected, none of these

baseline MINTCO algorithms consider load balancing and
resource utilization during allocation. For comparison, we also
implement other widely used allocation algorithms, includ-
ing maxRemCycle which selects the disk with the greatest
number of remaining write cycles, minWAF which chooses
the disk with the lowest estimated WAF value after adding
the newly incoming workload, minRate which chooses the
disk with the smallest sum of all its workloads’ logical write
rates, and minWorkloadNum which selects the disk with the
smallest number of workloads.

We first conduct experiments running on the disk pool
which consists of 20 disks with 9 different models of NVMe
SSDs (available on market in fall 2015). In our implemen-
tation, we mix about 100 workloads from MSR, FIU, and
Umass with exponentially distributed arrival times in 525 days.
Fig. 6(a) and (c) show the results of data-avg TCO rates
and resource (I/O throughput and space capacity) utilizations
under different allocation algorithms. Fig. 6(b) and (d) further
present the performance of load balancing, e.g., CV s of
workload number and resource utilizations. First, as shown
in Fig. 6(a) and (c), MINTCO-v3 achieves the lowest data-avg
TCO rate($/GB). We also observe that among the MINTCO
family, MINTCO-v2 performs the worst, see Fig. 6(a), and
obtains the largest CV s of workload numbers. The reason
is that to some extent, MINTCO-v2 aims at maximizing the
expected life time by sending almost all workloads to a
single disk, in order to avoid “damaging” disks increasing the
TCO. Therefore, it cannot “evenly” allocate the workloads. We
further find that maxRemCycle performs the worst among all
allocation algorithms, because it does not consider the TCO
as well as the varying WAF due to different sequentialities of
the running workloads. In summary, minTCO-v3 is the best
choice which considers expected life time, cost and expected
logical data amount that can be written to each disk.

We also implement MINTCO-PERF which is based on



MINTCO-v3, and considers the data-avg TCO rate as the
criterion to choose the disk for the new workload. As described
in Sec. IV-B2, MINTCO-PERF uses Eq. 5 to find the best
candidate under the goal of minimizing TCO, maximizing
resource utilization, and balancing the load. There are a set
of weight functions (i.e., f(Rw), gs(Rr), gp(Rr), hs(Rr)
and hp(Rr)) used in Eq. 5 . To investigate the effects of
these weight functions, we conduct sensitivity analysis on the
average values for the five weight functions in Eq. 5. After
trying different approaches, and choose the linear function ap-
proach to implement weight functions. We show the over-time
average value of each function normalized by the minimum
function one. For example, “[5,1,1,2,2]” means that all values
are normalized by the second weight function (gs(Rr)). We
also observe that space capacity (instead of I/O throughput)
is always the system bottleneck (i.e., with high utilization)
across different approaches. This is because NVMe SSDs
support up to 64K I/O queues and up to 64K commands
per queue (i.e., an aggregation of 2K MSI-X interrupts).
Meanwhile, workloads we are using here are collected from
traditional enterprise servers, which have not been optimized
for NVMe’s revolutionary throughput capacity improvement.
We also find that with a slight sacrifice in TCO, MINTCO-
PERF can improve both resource utilization and load balancing.
Fig. 6(c) further show that “[5,1,1,3,3]” is the best choice
among all cases, which is 3.71% more expensive than the
baseline minTCO, but increases the space utilization ratio
by 7.13%, and reduces CV of throughput and space capacity
utilization by 0.25 and 0.8, respectively. This is because
MINTCO-PERF sets TCO and space capacity higher priorities.

VI. RELATED WORK
Few prior studies that have focused on the long-term

costs of SSD-intensive storage systems with SSDs so far,
especially in the context of datacenters. Majority of the existing
literature investigates SSD-HDD tiering storage systems. [12]
was proposed to reduce the cost of a SSD-HDD tiering
storage system by increasing both temporal and spatial update
granularities. The “cost” in vFRM is the I/O latency and
delay, rather than price. [13] built a cost model that also
considers the lifetime cost of ownership including energy
and power costs, replacement cost, and more. They assume
that the “trade-in” value of the disk is a linear function of
its available write cycles. Meanwhile, in terms of budget-
driven workload allocation method, [14] recently presents a
systematic way to determine the optimal cache configuration
given a fixed budget based on frequencies of read and write
requests to individual data items. Write amplification of an
SSD depends on the FTL algorithm (e.g., [15], [16]) deployed
in the controller. However, SSD vendors do not publicly reveal
the FTL algorithms to customers due to confidentiality issues.
Techniques for isolating random and sequential I/Os and VM
migration I/O allocation were presented in [17] and [18]. To
prolong the lifetime and improve the performance of SSDs
with cache, [19] proposed an effective wear-leveling algorithm
based on a novel “triple-pool” design. [4] presented a nearly-
exact closed-form solution for write amplification under greedy
cleaning for uniformly-distributed random traffic.

VII. CONCLUSION
In this paper, we characterize the write amplification (WA)

of SSDs as a function of fraction of sequential writes in a
workload. We plug this WAF function into our proposed Total

Cost of Ownership (TCO) model, which also considers capital
and operational cost, estimated lifetime of Flash under different
workloads, resource restrictions and performance QoS. Based
on the TCO model, we build the online workload allocation
algorithm MINTCO and MINTCO-PERF. Experimental results
show that MINTCO reduces the ownership cost, and MINTCO-
PERF further balances the load among disks and maximize the
overall resource utilization, while keeping the TCO as low as
possible.
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