Predicting Parallel Processing of Machine Learning Algorithms

1. Overview
 - Develop new techniques and approaches to speed up machine learning algorithms for large-scale data processing.
 - Objectives
 - Explore parallel implementations of machine learning algorithms on computer clusters w/ and w/o a variety of accelerators
 - Develop new capacity planning models to give a data analyst quick information about the execution time of a machine learning algorithm
 - Driven applications: the classic k-means clustering algorithm parallelized using MATLAB Parallel Computing Toolbox.

2. Parallelization
 - Three general classes of unsupervised learning methods:
 - K-means clustering
 - Mixture models
 - Latent Dirichlet Allocation (LDA)
 - K-means clustering
 - Parallelize the "assignment" in each iteration
 - MATLAB Parallel Computing Toolbox
 - parfor, spmd
 - CUDA or MPI programming

3. Case Study
 - Parallel k-means clustering for image processing

4. Performance Prediction
 - FIM – a Fine-grained Markov model for predicting execution times
 - state of each thread: active (P_a) or passive (P_p)
 - partition the processing of an application into multiple stages
 - Learning trend to refine models to be independent on hardware parameters
 - develop a new regression model with a multiplicative tuning factor

5. Preliminary Results
 - Capture the characteristics of heterogeneous hardware architectures.
 - Predict the behavior of an application running on an array of computing platforms.
 - Configure the right computing platform and choose a good way (MATLAB Parallel Computing Toolbox, CUDA or MPI) to parallelize unsupervised learning algorithms.

References: