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Abstract—K-Means clustering is a popular unsupervised ma-
chine learning method which has been used in diverse appli-
cations including image processing, information retrieval, social
sciences and weather forecasting. However, clustering is compu-
tationally expensive especially when applied to large datasets.
In this paper, we explore accelerating the performance of K-
means clustering using three approaches: 1) shared memory
using OpenMP, 2) distributed memory with message passing
(MPI), and 3) heterogeneous computing with NVIDIA Graphics
Processing Units (GPUs) programmed with CUDA-C. While
others have looked at accelerating K-means clustering, this is
the first study that compares these different approaches. In
addition, K-means performance is very sensitive to the initial
means chosen. We evaluate different initializations in parallel
and choose the best one to use for the entire algorithm. We
evaluate results on a range of images from small (300x300 pixels)
to large (1164x1200 pixel). Our results show that all three parallel
programming approaches give speed-up, with the best results
obtained by OpenMP for smaller images and CUDA-C for larger
ones. Each of these approaches gives approximately thirty times
overall speed-up compared to a sequential implementation of K-
means. In addition, our parallel initialization gives an additional
1.5 to 2.5 times speed-up over the accelerated parallel versions.

I. INTRODUCTION

Clustering is the unsupervised classification of patterns
such as feature vectors, observations or other data items
into groups [1]. Each cluster aims to consist of objects with
similar features. Clustering has broad appeal and has been
used to address many contexts like feature extraction, data
compression, dimension reduction and vector quantization.
The notion of quality of clustering depends on the require-
ments of an application. There are several methods for finding
clusters using techniques of neural networks, splitting-merging
and distribution based clustering. Among different clustering
formulations, K-Means clustering is one of the most popular
centroid-based clustering algorithms due to its simplicity. We
investigate parallelization of K-Means clustering on three
different platforms: OpenMP, MPI and CUDA.

The three major contributions of this paper are:

e A K-Means implementation that converges based on

dataset and user input.

o Comparison of different styles of parallelism using dif-

ferent platforms for K-Means implementation.
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o Speed-up the algorithm by parallel initialization.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the K-Means clustering algorithm and
explore the possible parallelism in it. In Section III, we explain
the deployments of K-Means with OpenMP, MPI and CUDA,
respectively. Section IV explains the effect of the initialization
step on the K-Means clustering algorithm and deployment
of an improved parallel initialization of K-Means on shared
memory platforms. Section V presents results and speed-up
analysis. We describe the related work in Section VI and
summarize the paper in Section VII.

II. KMEANS
A. K-Means clustering

K-Means is an unsupervised machine-learning algorithm
widely used for signal processing, image clustering and data
mining. K-means clustering aims to partition n observations
into K clusters. Each observation is assigned to the cluster
with the nearest mean, with the mean value of a cluster serving
as a prototype for each cluster. This results in a partitioning
of the data space into Voronoi cells. The algorithm consists of
three stages: initialization, computation and convergence.

Algorithm 1: K-Means clustering algorithm

1 Input: Dataset, K, Tolerance
2 Output: Mean table, Assignment of each datapoint to a
cluster
Initialize
Assign data to nearest cluster
Calculate new means
if Converged then
| Output assignment of data
return,;
else
10 ‘ Continue from step 4 with new means

E-EE- R AL

Algorithm 1 explains the basic K-Means clustering algo-
rithm, where K 1is the desired number of clusters to be
formed. There are a number of approaches to initialize K
means, the most commonly used is random initialization.



The computation includes two major steps: 1) computing
the distance between points and means and 2) computing
the means. Euclidean is the most commonly used distance
metric, but other norms can also be used according to user
requirements. The mean calculation is the summation of all
points belonging to a cluster divided by the total number of
members belonging to that cluster. The convergence check
determines when to stop iterating. This is done by keeping
track of the number of points changing their clusters in a
given iteration compared to the prior iteration. Tolerance is
defined as the permissible range of variation in a quantity. We
use tolerance to keep track of how many pixels may change
clusters between the previous iteration and the current iteration
in order to converge. For example, if the tolerance is 0, then
we expect that no point should change its cluster compared to
the previous iteration. Tolerance is computed by counting the
number of points that have changed clusters in two consecutive
iterations and dividing this count by the total number of points.

The three major challenges in implementing K-Means are:

o Initializing centroids
o Determining number of centroids (K)
o Determining number of iterations

The K-Means clustering algorithm has a problem of con-
verging to a local minimum of the criterion function depending
upon the selection of initial centroids. Thus, selection of proper
initial centroids is important. This algorithm expects the total
number of desired clusters to be formed and in some cases, the
total number of iterations to be performed as inputs. Predicting
K and iterations may be difficult as these may vary with
different input datasets. The above discussed challenges are
addressed in our implementation.

B. Parallel feature extraction
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Fig. 1: K-Means parallel implementation

K-Means is an iterative method where in each iteration,
calculation of the distance of each data point to all the means
is independent of other data points. Thus, the computation
of clusters exhibits a lot of parallelism within each iteration.
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The algorithm spends 85% to 90% of its execution time in
computing. Thus step 4 in Algorithm 1 is an excellent place
to explore parallelism.

Figure 1 gives the overview of K-Means on a parallel
platform. The steps of initialization and convergence check
are done sequentially while the computationally heavy step of
finding the nearest mean to a point is done in parallel. The
major goal is to explore different parallel implementations for
K-Means without compromising its correctness.

III. PARALLEL IMPLEMENTATIONS

We applied three forms of parallelism, including shared
memory using OpenMP, distributed memory using Message
Passing Interface (MPI) and NVIDIA’s Graphics Processing
Units (GPUs) programmed with CUDA-C. Each of these are
described below.

A. OpenMP

OpenMP implements a shared memory model and a mul-
tiple thread program to spawn parallel computation. Random
points are picked as initial means to start the algorithm, then
the parallel region is entered. Each point is assigned to its
nearest cluster by a group of threads operating in parallel,
followed by a sequential step to compute new means. If the
algorithm has not converged then the parallel threads are
spawned again with the new means.

B. Message Passing Interface

MPI is the implementation for a distributed memory plat-
form. The deployment is a Master-Slave model where sequen-
tial steps are performed by the master process and the slaves
do the parallel work. The major difference in the distributed
memory implementation from the shared memory implemen-
tation is that the master needs to perform explicit send and
receive calls to distribute the data among available processes
and to collect resulting assignments from the processes. In
every iteration, the slaves send the index array containing the
cluster assignment for each point and the master broadcasts
new means to all slaves after updating means and checking
for convergence. The master decides to terminate when the
desired convergence is reached.

C. CUDA

This is a heterogeneous implementation consisting of CPU
as host and GPU as device. The initialization is done on the
host, then the host copies all the points to the GPU’s global
memory. The GPU performs the required calculations to form
the index array containing the nearest cluster for each point in
parallel. The index array is copied back to the host memory.
The host then calculates new means and copies them back to
the device if convergence is not reached.

IV. IMPROVED PARALLEL INITIALIZATION

We exploit parallelism during initialization to find a good
set of initial centroids. The K-Means clustering algorithm
may converge to a local minimum of the criterion function
depending upon the selection of initial means. The time taken
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Fig. 2: Parallel initialization of Means.

by K-Means clustering and the number of iterations required
depend strongly on the initialization of the means, so this
step needs to be handled properly. As shown in Figure 2, for
initialization of means in parallel, we pick different sets of
means and give each to one OpenMP thread.

Each set of means is operated on each thread independently
for 5 iterations, on a portion (v/#points) of the dataset. The
quality of clustering from each set of means is compared using
their respective partial results. The quality of clustering is
the best for the set of means which results in the minimum
intra-cluster distance and maximum inter-cluster distance. The
set with better quality of clustering will converge faster and
in fewer iterations. This set is selected as the initial means
for all the implementations. It is not required to wait until
convergence to compare, but only 4 to 5 iterations suffice,
because approximately 60% of the points are assigned proper
clusters in the first 4 to 5 iterations. After obtaining the best
set of means, the whole dataset is divided among the available
parallel resources and a copy of the best set of means is given
to all these parallel resources. Once an initial set of means is
computed, parallel computation proceeds as before.

The advantage of the parallel initialization method is that
the possibility of getting a set of initial points which can
reach a global minimum rather than a local minimum is
increased. This also helps in reducing the number of iterations
to converge. The disadvantage is that we are introducing
an additional computational step to select the best set of
random means. This trade-off between parallel and random
initialization is explored in the experiments.

V. EVALUATION
A. Experiments

Our clustering implementation tackles all three major chal-
lenges of K-Means as explained in Section II. It takes images
as input datasets. We consider a total of five features including
the three RGB channels as well as the x, y position of each
pixel in the image. The X, y position is used to identify
clusters that are close spatially as well as in color. We choose
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Fig. 3: Content of input image (a) Simple content (left), (b) Complex
content (right).

random points to initialize each cluster center but keep them
the same over all parallel implementations for comparison
purposes. We also implement parallel initialization as ex-
plained in Section III for tackling the challenge of centroids
initialization. We use Euclidean distance for calculation of
the nearest cluster to each data point. On parallel platforms,
this step is done simultaneously on multiple data points. The
convergence check is done using tolerance as explained in
Section II. As K-Means is an iterative algorithm, the total
number of iterations required for a given input dataset depends
on the input size and contents. Figure 3 gives examples of
simple (left) and complex (right) images. A bigger but simple
image may require fewer iterations than a smaller but complex
content image. Thus our implementation does not require the
total number of iterations as input. Instead, the total number
of iterations is decided at runtime, depending on input size,
contents and the tolerance provided by the user. We use
the Drop-out technique for estimating the proper number of
clusters (K). In this technique, we initially give an upper
limit of K as input. After every iteration the clusters which
have no points assigned will be dropped. Experiments were
performed on several sample images, with different image
sizes, resolutions and complexity to evaluate the performance
of our implementations.

Fig. 4: Reconstructed clustered output of input image (left) with (a)
Each cluster having the color of its mean(top right), (b) Cluster colors
chosen to show contrast (bottom right).

To visualize the output, we create an image where each
pixel is represented by its cluster. We do this in two ways:

1) Assign the color of the centroid to each cluster. In this



way, we obtain an output image which resembles the
input image (e.g., top right image in Figure 4).

2) Assign random colors to each cluster. Using the first
method of visualization, it is not easy to identify those
clusters that have their means very close to each other.
To get a better visualization of image features, we
implement this second method, to observe the different
clusters that K-means came up with (e.g., bottom right
image in Figure 4).

All the parallel versions including OpenMP (with different
number of threads), MPI (with different number of processes)
and CUDA (with different block size) result in the same output
image. We conclude that the quality of clustering by K-means
is not dependent on the platform and implementation if the
algorithm is kept the same.

B. Setup

We implement parallel versions for K-Means and compare
the end-to-end execution time. In our experiments, we vary
size of an image, number of clusters, tolerance and number
of parallel processing units (including number of threads for
OpenMP, number of processes for MPI and block dimensions
in a grid for CUDA) to observe the performance of K-Means.
We experiment with a range of the above mentioned features,
but report here on results for two images, four different
numbers of clusters depending on the input image and four
different values of tolerance. We show the best speed-up ob-
tained under the given number of parallel processing units. The
images used have 300x300 pixels (1.8MB) and 1164x1200
pixels (0.5GB) where each pixel is 20 bytes consisting of
five double floating point values. Evaluation was done using
the Discovery cluster [2] at Northeastern University. Two
types of architecture are considered in our evaluation. The
compute nodes have dual Intel ES 2650 CPUs @ 2.00 GHz
and 128 GByte of RAM. These nodes have 16 physical and 32
logical compute cores and a 10Gb/s TCP/IP backplane. The
GPU nodes have NVIDIA Tesla K20m GPU containing 2496
computing CUDA cores and 10Gb/s TCP/IP backplane. The
OpenMP experiments were performed on one of the compute
nodes with different numbers of threads. The MPI experiments
were performed on a group of compute nodes ranging from
one to ten out of which the best performing combination was
reported. We does not use the SIMD capabilities of the Intel
processors. The CUDA experiments use one of the GPU nodes
launched with different sizes of block dimensions as powers
of two, as the GPU performs better if the block size is a power
of two. It was observed that a block dimension having similar
aspect ratio to that of image dimension performed best. For
example, a block of 32x16 is better suited for a landscape
image having more pixels in the horizontal direction when
compared to the vertical direction.

C. Results

Tables I and II show the total end-to-end execution time
and speed-up for each implementation with the 300x300 pixel
image when clustered into 100 clusters, and the 1164x1200
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pixel image when clustered into 240 clusters, respectively.
In both tables, the tolerance is set to 0. We observe that all
parallel versions including OpenMP, MPI and CUDA perform
better than sequential C. The multi-threaded C version using
OpenMP performs best with 16 threads and outperforms the
rest with a speed-up of 31x for the 300x300 pixel image. The
16 threads performed best as all 16 cores of a node had enough
load and computations to deal with, that there was a slow down
due to context switching on any further increase in number of
threads. CUDA performs the best for the 1164x1200 pixel
image when a block of dimension 32x32 is launched, with a
speed-up of 30x. For the 1164x1200 pixel image, the number
of pixels on the horizontal axis is almost equal to that on the
vertical axis, so the block dimension of 32x32 performs the
best.

From the range of experiments on different size of images,
we observe that GPUs can be beneficial when working with
large datasets while a shared memory platform is good for
small and medium sizes of input. For the larger images there
exist lots of computations that can be done in parallel. As
GPUs have more cores and are better suited for embarrassingly
parallel calculations, the CUDA implementation performs best
in these cases. GPUs are not well suited to process smaller
datasets as the communication overhead between device and
host is large compared to the benefit derived from faster
computing. The shared memory platform of OpenMP is better
suited for K-Means than the distributed platform of MPI as
the communication overhead between physical nodes in a
distributed setting is expensive. The downlink communication
to broadcast the new means to all the workers is the dominant
time consuming factor. Use of shared memory for broadcast
is faster than on the distributed memory platform.

In the MPI implementation, distribution of processes among
fewer physical nodes is advantageous for small images as a
few nodes are sufficient for the required computation. Any
additional increment in the number of nodes will give only
network overhead rather than improvement. In the case of
larger images, distribution of processes among a larger number
of nodes is better as there exist enough computations to be
performed by distinct nodes.

Figure 5 shows the time taken by K-Means to operate on
the 300x300 pixel image with K = 30 for OpenMP with 16
threads and varying tolerance values. We observe that as we
decrease the tolerance, the number of iterations as well as the
speed-up compared to sequential C increase.

Figure 6 shows the effect of parallel improved initialization,
as explained in Section IV for both images with (a) 300x300
pixel and (b) 1164x1200 pixel. We set tolerance to 0 and
vary the number of clusters (K) from 10 to 240. We observe
that parallel initialization helps in reducing the total number
of iterations, leading to an overall reduction in processing
time. Additional speed-up of 1.5x to 2.5x depending on the
number of iterations is obtained by implementing parallel
initialization. As K increases, a proper assignment of initial
means becomes more important. If a small feature in an image
does not contain an initial point then it may get merged with



TABLE I: Time and Speed-up (SU) for 300x300 pixels input image

K Iter. | Seq. (s) OpenMP (s) | OpenMP SU | MPI (s) | MPI SU | CUDA (s) | CUDA SU
10 4 1.8 0.1 16.51 0.13 13.84 0.16 10.77
30 14 5.42 0.21 25.8 0.32 16.93 0.47 11.48
50 63 30.08 1.28 23.5 1.45 20.74 2.06 14.56
100 87 43 1.39 30.93 1.98 21.71 2.68 16.01
TABLE II: Time and Speed-up (SU) for 1164x1200 pixels input image
K Iter. | Seq. (s) OpenMP (s) | OpenMP SU | MPI (s) | MPI SU | CUDA (s) | CUDA SU
30 21 1187.08 49.54 23.95 60.51 19.61 46.48 25.53
60 49 2651.28 98.77 26.84 115.68 2291 93.68 28.29
120 92 4595.96 159.97 28.72 170.22 26.99 154.36 29.77
240 166 8897.72 300.54 29.60 315.15 28.23 294.01 30.26
structure of k-d tree data structure [3]-[5]. These techniques
' ' ' ' give good speed-up on sequential platforms but as parallel ar-
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Fig. 5: Time with varying tolerance - Input image of 300x300 pixels

surrounding clusters. Also, the time taken by the algorithm
increases with increasing number of clusters. As a result,
parallel initialization has more room to improve the quality
of clustering as well as showing speed-up for larger number
of desired clusters.

In summary, our implementation of K-Means, which ad-
dressed all three basic challenges, is performed on three differ-
ent parallel platforms and achieves significant improvements
in speed-up for both small and large input images. In addition,
We evaluate K-Means clustering algorithm on different parallel
computing platforms to obtain the best one for a given input
dataset.

VI. RELATED WORK

Clustering is required in diverse applications in several
fields. K-Means is a popular for clustering algorithm because
it works well with large datasets and is a simple algorithm. K-
Means clustering has previously been modified for speed-up on
sequential platforms by following some statistical approaches
like using dormant bins, skip frequency and hierarchical
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chitectures are not suited for operations including conditional
statements and flow control, these methods do not give the
desired improvement for parallel implementations. We explore
and compare the methods suited for three different parallel
platforms in this paper.

K-Means has three major challenges. First, the total number
of iterations and quality of clusters formed depends on initial
selection of centroids. Second and third, the number of the
desired clusters to be formed and total number of iterations
to be performed is expected to be given as input to the algo-
rithm [6]. Previous work has tried to overcome the challenge
of initialization on a sequential platform [7]-[9]. The basic
idea is to selecting more than one set of centroids initially and
pick the best one to operate further. In this work, we obtain
better initial centroids by utilizing shared memory parallel
platform with OpenMP and then use this set of centroids to
initialize all other platform implementations. We tackle the
second problem of giving the number of clusters as input by
providing an upper limit to K and dropping out clusters when
no points are assigned to them. The third challenge is that
many implementations of the K-Means algorithm require the
total number of iterations to be provided as input. Since the
total number of iterations required to cluster the given dataset
not only depends on the size of the dataset but also on the
complexity of the contents, a small dataset might take more
iterations than a larger dataset. Thus, assignment of a fixed
number of iterations based on input size is not sufficient. In this
paper, we implement K-Means based on convergence tolerance
and thus automatically takes into consideration the size and
the content of the input dataset to decide the total number of
required iterations.

Machine learning algorithms have iterative behaviour and
are often computationally demanding. This makes them good
candidates for implementation on parallel computing plat-
forms. K-Means clustering algorithm has previously been
explored for speed-up on shared and distributed memory
platforms individually [10], [11]. For very big datasets to be
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clustered, GPUs were used for speed-up [12]-[14]. Working
with GPUs, global memory was found to be better when com-
pared with implementing K-Means using texture memory and
constant memory [13]. Most of the parallel implementations
explore only a single platform and either limit the number of
iterations to a small number (around 20-30) [14], or use a small
number of desired clusters (around 30-40). This paper is the
first study that tackles all the major challenges of K-Means and
evaluates performance across three parallel implementations.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a K-Means clustering implementation
which tackles the three challenges of K-Means and deployed
it on different computing platforms. We evaluate and compare
our K-Means implementation across three parallel program-
ming approaches. Our experimental results show around 35x
speed-up in total. We also observe that the shared memory
platform with OpenMP performs best for smaller images
while a GPU with CUDA-C outperforms the rest for larger
images. In the future, we plan to investigate using multiple
GPUs as well as combining approaches using, for example,
OpenMP-CUDA and MPI-CUDA. We also plan to adapt our
implementation to handle larger datasets.
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