1. Overview

- Develop new techniques and approaches to speed up machine learning algorithms for large-scale data processing.
- Objectives
 - Explore parallel implementations of machine learning algorithms on computer clusters with and without a variety of accelerators
 - Develop new capacity planning models to give a data analyst quick information about the execution time of a machine learning algorithm
- Driven applications: the classic k-means clustering algorithm parallelized using MATLAB Parallel Computing Toolbox.

2. Parallelization

- Three general classes of unsupervised learning methods:
 - K-means clustering
 - Mixture models
 - Latent Dirichlet Allocation (LDA)
- K-means clustering
 - Parallelize the "assignment" in each iteration
 - MATLAB Parallel Computing Toolbox, parfor, spmd
 - CUDA or MPI programming

3. Case Study

- Parallel k-means clustering for image processing

4. Performance Prediction

- FiM – a Fine-grained Markov model for predicting execution times
 - state of each thread: active (R_i^0) or passive (R_i^1)
 - partition the processing of an application into multiple stages
 - Transition probabilities: switch between two states (P_{ij}) or self-loop in the same state (P_{ii})
 - Completion probabilities: transfer from one stage to the other one (e.g., P_{s1} and P_{s2})
 - Instrumentation tools (perf stat) to obtain required data
 - Execution time per stage: $T_i = 1/(P_{si} \cdot F)$
- Learning trend to refine models to be independent on hardware parameters
 - develop a new regression model with a multiplicative tuning factor

5. Preliminary Results

- (a) Learning trend of total cycles, stalled cycles and utilizations
- (b) Predicted results using the modified linear regression model
- (c) Actual v.s. Predicted results

Summary of this project

- Capture the characteristics of heterogeneous hardware architectures.
- Predict the behavior of an application running on an array of computing platforms.
- Configure the right computing platform and choose a good way (MATLAB Parallel Computing Toolbox, CUDA or MPI) to parallelize unsupervised learning algorithms.

Drivne applications: the classic k-means clustering algorithm parallelized using MATLAB Parallel Computing Toolbox.