
Reinforcing Cloud Environments via Index Policy
for Bursty Workloads

Venkatraman Balasubramanian?†, Moayad Aloqaily‡, Olufogorehan Tunde-Onadele†, Zhengyu Yang†,
and Martin Reisslein?

?Arizona State University, Tempe, AZ, USA
‡Al Ain University, UAE and xAnalytics Inc., Ottawa, ON, Canada

†Samsung Semiconductor Inc., Memory Solutions Lab, San Diego, CA, USA
Emails: †{v.balas, fogo.onadele, yang.zhe}@samsung.com, ‡maloqaily@ieee.org, ?mreiss@asu.edu

Abstract—In recent years, the amounts of network traffic
targeted towards cloud data centers have fluctuated based on
user requests. This traffic is bursty and requires a high degree
of attention. Due to the variable nature of this traffic, some
requests need to be re-allocated on-the-fly. Such circumstances
result in performance degradations due to resource management.
As appropriate solutions can be proposed only based on un-
derstanding the workload and the environment, Reinforcement
Learning (RL) is a strategy that is predominantly used. Further,
it has been shown that the Poisson arrival rates do not capture
real-world burstiness. Thus, we mainly have a two-fold problem
to address: (i) the traffic requires a new modelling approach that
can characterize the burstiness, and (ii) balancing the load that
can maximize the reward to the provider in such circumstances.
In this paper, we propose a novel, yet simple traffic modelling
that enables burst detection based on an index policy. We show
that the throughput constraints play a crucial role in scheduling
and our proposed RL technique produces reliable results in
such a scenario. Our RL algorithm decides what instance of the
request traffic needs to be processed so that the cloud provider
can maximize its profit and the decisions made in hindsight are
non-biased. We compare the proposed policy with two state-of-
the-art approaches and draw key inferences as to why an index
policy performs better in scenarios that demand RL. We observe
over five times shorter average wait times while bursty workload
crosses a saturation limit of 150% compared to conventional
policies.

Index Terms—Bursty workload, Index policy, Mobile Cloud,
Reinforcement learning (RL).

I. INTRODUCTION

The arrival rates in traditional cloud data centres have
become explosive in the past decade. In the US alone, the data
surge has resulted in creation of a “hyperscale” market as seen
in [1][2]. Different user requests ranging from multimedia and
gaming applications to web apps have shown a drastic need
to manage the Quality of Service (QoS) in such environments
so as to achieve high throughput as well as low-latency
service [3], [4]. Typically, when the network load goes beyond
the usual threshold, a barometer is needed to manage the
change. The sustainability and management of cloud data
centers infrastructure is a critical challenge [5].

The data arrivals at the cloud location are connected to
scheduling delays that go by the rule that the higher the vari-
ability in arrivals, the longer are the scheduling delays. This

means that if resources are committed, changing schedules
will result in unsatisfied service level agreements (SLAs). In
cloud environments, balancing the requests from customers
is the first step towards resource allocation. The next step is
application specific, if one particular application is in higher
demand, computational resources needs to be reassigned to
that particular application instance. These requests are often
incoming in short periods that are responsible for the spikes
with higher arrival rates. Hence, we need a decision making
strategy to address this challenge.

To this end, RL advancements, such as [6], make online
decision while understanding the environment. For instance,
some applications that have different execution requirements,
such as serially loadable or parallely executable, frequently
create changing resource needs. Such use cases demand novel
mechanisms to maintain client satisfaction and QoS provision-
ing. Typically, ON/OFF source aggregation methods have been
designed to tune to specific traffic classes. These methods have
too many parameters to compute that makes traffic modelling
tedious. Additionally, these models do not give importance to
throughput computation. Thus, we propose a novel yet simple
model that takes assistance from the RL paradigm. We design
an agent that takes inspiration from the restless bandit index
policy [7]. In this model, we show how throughput constraints
are key towards addressing the scheduling problem. We show
how this index enables traffic characterization. Lastly, we
show how this modelling can benefit the network operator
in maximizing their rewards by balancing load in a cloud
environment.

A. Problem and Contributions

The changing bursty workloads degrade QoS and affect
service provider profits. The RL paradigm specifically deals
with such challenges that makes experience based decisions.
This means that the agent is at first unaware about the task, but
learns with time whereby a reward is specified based on how
well the task is accomplished. In order to do so, the job arrival
and completion rate of the workloads need to be optimistically
considered without dropping requests. To this end, this paper
contributes the following:
• A burst indication parameter based on an index policy

calculation is proposed. The index policy calculation is978-1-7281-4973-820$31.00 c© 2020 IEEE

derived from the restless multiarm bandit problem that
allows us to predict the burst value which gets assigned
to a cluster.

• An RL architecture is proposed that calculates operator
profits based on successful service provisioning in bursty
environments. In this model, we employ the standard Q-
learning based strategy for learning.

• Our simulation results show that there is over five times
reduction in average (normalized) waiting under through-
put constraints with over 150% bursty load saturating the
link.

The remainder of this paper elabprates the state-of-the-art
approaches in Section II followed by the model of our design
in Section III and its flow of control Section IV. Finally, in
Section V, we take some measurements and discuss the proof
of concept experiments, followed by concluding remarks in
Section VI.

II. RELATED WORK

Bursty workload management is a well-researched topic. A
major limiting factor in most studies is the choice of Poisson
or uniform arrivals that generally do not appropriately reflect
real-world scenarios. However, RL based techniques have
grown to capture and enhance the performance of variety of
such dynamic decision-making systems. Importantly, resource
allocation is a challenge that can predominantly be satisfied
by RL.

The authors in [8] have evaluated an incoming request
(bursty) process that is predictably following a uniform distri-
bution. In contrast, our study is more realistic as the incoming
jobs are arbitrary. Noticeably, in [9], the packet routing was
observed where the size of the network was not dynamically
changing. Furthermore, new learning techniques have been
designed for alleviating network congestion, such as [10],
albeit without considering any reward based issues for the
cloud operator. Additionally, various scheduling based algo-
rithms have been designed in [11] and [12] that are specific to
clusters. However, neither of these studies follow a learning
design that makes online decisions.

Mao et al. in [13] have proposed a deepRM model that
performs comparably to our study, however, Mao et al. do
not consider a cloud data-center environment that is focus
of our framework. The key difference is that, a data-center
cluster works with a traffic model that is highly varying based
on changing user request, unlike the neural network based
complex strategy that Mao et al. have proposed. In [6], Wang et
al. propose a prediction mechanism that is trained in a greedy
layer-wise fashion used for learning generic internet traffic
flow features. However, [6] does not provide any strategy
for resource allocation based on an online decision making
mechanism. Likewise, in [14], Jacobs et al. propose an affinity
based neural network which provides a plan for deployment of
network functions at the infrastructure provider. On the con-
trary, our study is rooted in realistic data center environments
with changing workloads that applies RL in cloud clusters. In
summary, our study is one of the first research explorations

to define a new network traffic model for a high reward/high
profit based cloud environments.

III. THE PROPOSED MODEL

The key advantage of the proposed model is that burstiness
is described based on an indexable parameter. This problem
can be transformed into a restless multi-arm bandit problem
[7], where every node in the cloud environment behaves as
a restless bandit. Essentially this parameter allows learning
traffic behaviors and provides feedback to the operator on-the-
fly. More specifically, the model fitting and trace generation is
efficient as it scales linearly with the size of the data.

A. Entropy and Hurst Parameter

Entropy is defined in [15] as the “uniformity of a discrete
probability function P ”. The entropy value E(P) for an event
Ei with probability pi is given as

E(P) =

n∑
i=1

pi log2 1/pi. (1)

When all the probability values pi are the same, then the
entropy reaches its maximum value. On the other hand, when
one event dominates, then the entropy approaches zero. Thus,
the entropy characterizes the burstiness.

A global value of burstiness per se is judged by the Hurst
parameter [16]. It is actually a notion of self-similarity. An
important point here to notice is that self-similar processes
do not always generate bursty sequences. Further, the hurst
parameter pertains to usage over long time scales. Hence,
we draw inspiration from a statistical index in this paper as
elaborated below.

B. Indexability of Traffic and Reinforcement Learning

In [7], an optimal strategy for the multi-arm bandit problem
was proposed called the Gittins Index. Eventually, a number of
similar studies were conducted, see e.g., [17]. In our study, we
use the index as a parameter that demarcates requests within a
time interval. For example, an index of 0.7 indicates that 70%
of the requests arrive in one half of the time interval and the
remaining 30% in the other half. During this arrival process,
two types of actions can be taken, one is the overall optimal
strategy for pre-empting traffic, the other is the computation of
the index. In line with this concept, we compute the optimal
strategy of allocating compute resources based on how the
traffic construction grows over time. For instance, the initial
construction begins with two time divisions and gradually
recurses over the number of requests generated on each half of
the time axis according to the index computation. Our intention
here is not to show how fast this index can be computed,
but to explore the insights gained by using the index as an
input to learn the traffic characteristics. As the value of the
index approaches one, the traffic irregularity increases; while
for uniform traffic, the index values are 0.5.

In our training model, we enumerate a state space that
maintains the resource profiles and requests as tabular entries.
The resource profiles are data-centre computation and memory

images and the requests are the jobs waiting to be scheduled.
This is fed as input to our simulation environment. Our action
space is very large as it grows exponentially based on the
admitted jobs. The action space is defined as a method where
the scheduler sends out a message, such as schedule request
r in slot k. Further, a valid action is considered to satisfy a
BestQos value or falls in the range from LeastQos to BestQos;
an invalid action is below this range. As each valid action is
chosen, the cluster entries in the resource table move up by
one slot k and new jobs can be viewed by the agent.

IV. POLICY DESIGN

We observed in [7] and [18] that the usage of Gittins
indices is only defined for indexable problems. However, as
our primary constraints include the throughput of the links,
our problem is not easily indexable. Thus, we need to relax
the throughput constraints. As we intend to manage workloads
based on the system burstiness windows (K), the throughput
within a time slot acts as a constraint. Primarily, an incoming
job can be satisfied in a number of available computing sites.
These computing sites are the nodes selected while forming a
composition cluster given as input for our training algorithm
(from the tabular entries mentioned above). Although our algo-
rithm finds the best available computing sites, the efficiency of
our algorithm resides in detecting burstiness and maximizing
the throughput. For example, consider a job from a user goes to
location N1 at a time t1, as this job distribution is completely
arbitrary over time, we do not know which job to schedule first
that will maximize the reward to the provider. This problem
can be reduced to a typical multiarm bandit problem [7]. The
difference in our case is that the incoming jobs are part of a
bandit process that evolves in an uncontrolled manner. In other
words, the nodes behave as restless bandits. To this end, we
design our system in a state space Xt such that a higher index
means that a particular workload corresponds to the bursty
traffic workload.

Consider playing a bandit process in state α. Clearly, by
continuing to play this process, it would prove optimal for
instances in states represented by the continuation set C(α)
as for any b ∈ C(α), λ(b) > λ(α) [19]. Thus, the stopping
time that maps to the beginning of the bandit process in state
α is the time T (S(α)) of set S(α), that is, the beginning of
the process S(α).

We define ζ as the optimal stopping time set. Notice that the
index of a bandit process depends only on that process, so we
can drop other labels and use the bandit process representation
by a set. Accordingly, we label the maximum index value as
ζ. To find the highest index value, the argmax of ζ should
be computed. The key idea is to order the set ζ in decreasing
order.

Based on this reasoning, we deduce: if we have a stopping
time for a traffic given as T (S(α)), where S(α), S(α) ⊂ ζ,
represents the bursty workload at instance α, then we can
define the index with the symbols definitions in Table I as

λ(α) = max
E[

∑T (S(α))
t=0 βtrt(Xt)|X0 = α]

E[
∑T (S(α))
t=0 βt|X0 = α]

. (2)

TABLE I: Symbols and Notations

Symbols Definition
βt Beta distribution at time t

Q(s, a) Learning parameter with state s and action a
dk ,bk m× 1 vectors
Qa,b Recursion step, where a, b are intermediate steps
rt Reward parameter at time t
o Represents a Bandit process o

C(a) Continuation set
S(a) Stopping Set

Fig. 1: The Proposed Framework

Equation (2) shows the index computation for offline scenar-
ios. The rationale behind using the index for traffic modelling
is that the probability state xi in state space Xt can be
substituted with pi in the entropy equation. Due to space
limitations we can only summarize this formulation.

A. Functional Interaction

As shown in Figure 1, the framework has two main phases.
Algorithm 1 represents the algorithm which is explained
below:

1) Phase 1: Detection
The Load Agent lies at the center of the system, and
supplies information about the cluster resources along
with the requirements for a particular request, closely
connected resource nodes and node/VM pool which
we have modeled as a resource allocation table. This
information is used by the Bound Calculation entity so
that the system can compute the measure of the actual
workload involved and not just use the number of jobs
enqueued to figure out the spike degree (burstiness). The
Manager labels a time window as a Strong, Medium or
Weak bursty period which it communicates to the rest of
the system. Although, this difference in the type of burst
does not affect the overall scheme, it is important to note
that the change in bursty load affects the average wait
times. Typically, a weighted first come first serve policy
produces a higher wait time as observed in Section V.

2) Phase 2: Load Balancing
The spike detection result is supplied to the Load Agent
and used to decide the appropriate learning strategy. A
low degree of bursty job arrivals allows room for more
accurate decisions. This is the initial training period in

our model. During intermediate traffic periods, a join
the shortest queue strategy is used, using information
about the actual workload state of the queues. Finally,
in the presence of a strong degree of incoming traffic, the
status information could likely be delayed. Thus, a round
robin strategy is chosen. In all the cases the throughput
constraints are maintained such that T jq ≤ Tπq where
j ∈ Set of load and q is the minimum throughput, π is
the max set of achievable throughput.

B. Algorithm 1(a)- Detection

Algorithm 1 begins with an index assignment in Line 2, that
is based on the burst index definition. The two sets, namely the
continuation set and the stopping set, are defined based on the
chosen time slots. The Markovian values a, b are the action
updates each time the resources are reallocated for the jobs
which enter the cluster. Lines 3 to 13 execute the following
steps:

1) The Best QoS values are chosen, these are the ones that
are defined primarily at the time of execution (when the
system is initialized), this can be considered as the initial
SLA agreement with the user.

2) As the burst traffic would require a new allocation,
inevitably, the QoS falls. However, based on the first
learning instance, this is fed back into the system which
in turn generates the lowest value of QoS for that
instance. We use the throughput constraints to judge the
next best/least QoS values.

3) Based on these inputs, the load agent calculates the
confidence bounds Bj . We assign the new incremental
resource value “I”, which eventually becomes the new
resource assignment for the next burst cycle. Each
iteration gives a new resource allocation which would in
turn satisfy the generated burst; however, as the number
of iterations increases, the produced rewards saturate.

4) The reward signals are those which provide better output
for the objective. For instance, lower the waiting/slow-
down of the requests, higher would be the rewards.

Specifically, this leads to the following steps:
1) In the initialization phase, we find the highest value of

index λ. The stopping phase for a state α can be regarded
as S(α), if α1 has the highest Burst Index Policy (BIP)
metric, which we also refer to as Burst Index (BI) for
brevity, then we have λ = S(α1).

2) In this step, iterating over the α1 state such that if
C(αk) = α1, . . . , αk−1 represents the next kth largest
BIP. We have, Q′′a,b = Pa,b, if b ∈ C(αk), and Q′′a,b = 0
otherwise, whereby Pa,b represents the updated Marko-
vian values using an m × 1 matrix. Further, I is the
m ×m identity matrix. Then, d(k) = [I − βQ′′(k)]−1ζ
(alternatively, considering that α1 has the highest Gittins
index value, then S(α1) = ζ and we can replace ζ by
λ) and b(k) = [I − βQ′′(k)]−11, giving the BIP value

BIP =
dkαk

bkak
. (3)

3) For each burst we recognize what is the best completion
rate and decide on a time T , which is the stopping time.
Until T is reached, the bursts continue. We call on the
Load Agent as the burst time slot comes to a close.

C. Algorithm 1(b)- Load Balancing

1) As the degree of variability is very high, we determine
a base resource parameter Bj that is subjected to be
assigned to loads j before the peak detection.

2) From the time the burst began till a stopping time,
we have a total of N allocations with nj being the
incremental updates done for assignments. This is given
by an estimated incremental load managing value I ′

I ′ =

√
2 lnN

nj
. (4)

For instance, when the load agent is called for the
first time, an initial expected Bj payoff plus the load
managing value I ′ is computed. Essentially, we have
the new updated value of Bj= Bj+I ′

3) It is important to drive resource assignment through
a learning process. Hence, we follow a RL strategy
called Q-learning [20]. According to this technique we
demarcate a mean reward that an agent could get from
the environment. For our algorithm we approximate the
expectation by using an exponentially weighted moving
average (EWMA). We iterate over the state-action cycle
as follows, here s, s′indicates BIP measurements, past
and present states, respectively, a indicates different ac-
tion parameter and r is the immediate reward parameter

Q̂(s, a) := r(s, a) + γmax
ai

Q(s′, ai). (5)

Using EWMA:

Q̂(s, a) := αQ̂(s, a) + (1− α)Q(s, a). (6)

This is further elaborated in Section V.

D. Resource Management

Our objective is to maximize provider profit under through-
put constraints. As estimating the changing cloud environment
conditions is NP-hard, we model it as an ILP, with xj and gj
being the cost of accessing the cloud node and cost of the link
in $/hr/month, respectively. Thus,

max
∑
i∈I

∑
j∈J

(xejp
e
i − rci gej) ; ∀c ∈ C;∀e ∈ E (7)

rci =

{
1, if VM c serves burst i
0, otherwise.

(8)

A binary variable pei , such that

pei =

{
1, if burst i takes the extra resource e
0, otherwise

(9)

Algorithm 1 solves this problem by making cluster assign-
ments following bin-packing heuristics, whereby bins are the
virtual machines that execute the computations.

Traffic
Monitor

Index Policy
Filter

Bound
Calculator

Base
Resource

New
Incremental

load
CompositionSchedule

State observation

Agent

Environment
Action

Reward

Traffic
Ingestion

Fig. 2: Reinforcement Learning via Index Policy for Bursty Load Management

V. PRELIMINARY EVALUATION AND EXPERIMENT

We deploy our simulator in python with an N node network.
The results shown are an average of 10 simulations. Based
on the j, the load on the node goes on increasing likewise
the incremental value I ′ will be changing. The higher the
value of nj , the harder is the throughput constraint. We
compare our model with a weighted first-come-first-serve
policy (FCFS) and random weight policy (RW). We show
through our experiments the maximum throughput achieved

Algorithm 1 RL Algorithm based on Throughput Constraints
for Burst Detection and Load Balancing

1: procedure INDEX-ASSIGNMENT()
2: Input: Si = {ai, ai+1, . . . , an}
3: . an list of index values assigned to the workload, with
Si as the stopping set

4: Input: Ca = {aiu;∀i ∈ Continuation set}
5:
6: for u in Ln do
7: BestQoSAu

, LeastQoSAu
= QoSe(Au)

8: for clusteri in N do
9: if BestQoSAu

≤ clusteraRi & clusteri
==“Initial Load (I’)” then

10: clusteri ← u
11: . ln Available Network Resources with QoS

values in clusteri
12:
13: end if
14: if LeastQoSAu ≤ clusteraRi & clusteri =“I’”

then
15: clusteri ← u
16: . mapping user application Au to network clusteri
17: else
18: Go to next clusteri in the list N
19: end if
20: end for
21: if Au not mapped to any cluster ∈ N then
22: . Try to find a resource in available pool
23: . Repeat the Index-Assignment() for new VM pool

after bound addition (B+I’)
24: end if
25: end for
26: end procedure

TABLE II: Definition of Variables used for the simulation
model

Variables Definitions
Tmax Overall Throughput achieved
j Load variation
K Time slots
N Number of nodes in a network
I′ Incremental Load
zj Burst control parameter
qj Minimum throughput per load

as follows:

Tmax = max
j
{zj(K + 1)/Kqj} (10)

We have set of time slot K ∈ {104, 5 ·104, 105, 5 ·105, 106, 5 ·
106}. We vary zj , qj ∈ (0, 1] Our objective through these
experiments is to measure the maximum throughput Tmax.
We compare our model based on key metrics, such as reward
earned, throughput, average wait due to differing loads, and
variation in nodes. Further, we evaluate how the increase in
iterations results in improved performance. Figure 2 presents
the workload interactions with the agent. The arrivals are
passed through the Index Policy Filter, where each burst
window is time stamped. During the arrival process two types
of actions can be taken, one is the overall optimal strategy
for preempting traffic and the other is the index computation.
The output of this goes to the Bound Calculator which
calculates the incremental load value based on the predicted
spike requirement. This leads to a reallocation of resources
that is done in the next phase, as illustrated in Figure 2.

In this next phase, the Orchestrator measures the required
resource increment (I’) needed for the change in the initial
allocation and performs re-computation of the desired resource
requirement. This is given as input to the Resource Com-
position Logic. Hence, this phase works in cooperation with
the infrastructure that plays an integral role in cloud resource
provisioning. This module performs the requested resource
VM chaining tailored to the SLA service demands. The VM
composition logic design is left for future work.

Table II shows the variable definitions used in the simula-
tions.

A. Observations

We observe from Fig. 3 that as the bursty load increases,
the average wait time increases. The weighted-FCFS performs
better than the random-weight policy as the jobs are scheduled

Fig. 3: Average wait Fig. 4: Improving rewards Fig. 5: Throughput variation with nodes

Fig. 6: Average wait variation
as fct. of # of iteration

Fig. 7: Throughput variation vs. time slot Fig. 8: Weighted moving average

based on simple weighted heuristics, whereas our Burst Index
Policy (BIP) performs better than both the policies. This
can be primarily attributed to the iterative training. In each
training iteration multiple examples of request sequences were
considered. Each load is initially assigned to a resource after
which the load is kept on increasing and over-saturating the
resource (upto 150%). As the main scope of this paper revolves
around evaluating bursty workload management via RL we
leave the communication delay comparison with job length
for future work.

We observe in Figure 4 that BIP improves with the increase
in the number of iterations, as we see initially the three
policies are no better than one another, however, within the
last few iterations it is clear that BIP outperforms the random
allocation policy. This is exactly what the learning algorithm
is explicitly optimizing. To draw further insight from this
approach, running the learning algorithm for longer may
produce better rewards. For instance, if some action instance
is better than the one chosen it may lead to a better reward.
As observed near the 600th iteration the graphs levels out,
indicating convergence to a saturation state.

Clearly, Figure 4 suggests a progressively improving pattern
as BIP learns to keep nodes free to satisfy jobs arriving in the
near future which can be scheduled faster. In case of weighted
FCFS such pre-emption is not possible as the new arrivals
have to wait until the old arrivals are completely serviced.
Further, both the W-FCFS and RW techniques rely on work-
conservation, contrary to this BIP learns from experience and

Fig. 9: Box plot of average wait

without prior knowledge.
In Figure 5, the variation in throughput with the number of

nodes in the network suggests a performance enhancement as
opposed to the state-of-the-art W-FCFS and RW approaches.
This can be attributed to the fact that as the number of nodes in
the network increases, we have more options for re-allocation
of jobs which in turn results in positive growth in throughput.
Further, Figure 6 shows the average wait variation with respect
to the iterations. As the iterations increase, the BIP wait
times reduce due to the experience gained by the learning
process. The boxplots in Figure 9 show that for all the 10
simulations, when we vary K, the average wait times remain
consistently within the 90–95% quartile ranges, irrespective of
the burstyness, showcasing the balancing act accomplished by
the BIP algorithm.

Figure 7 shows the change in throughput with the variation
in slot cycle. As expected, the throughput variation using BIP
falls with increase in slot values but does not reach zero.
This is highly dependent on the test failures when the feature
inputs are not completely understood which results in drop in
throughputs.

Figure 8 shows the expected moving average for workload
balancing in cloud data-centres based on the state-action cycle.
For BIP, we observe consistent improvements as opposed
to the lower changes (indicating slower adaptation) to the
changes in the state-of-the-art policies.

B. Discussion and Steps-forward
RL models highly depend on the iterations of the experiment

and the action space. The scheduler may admit a specific
subset of jobs. However, as the action space size increases
exponentially with the number of jobs (in the order of 2n)
it is preferable to keep the action space small. In our work,
we provision taking multiple actions in one step, that leads
to more actions taken in each step but leads to very minimal
inaccuracy. Although this inaccuracy is minimal or can be at-
tributed to certain invalid actions, our focus in this experiment
is only on scheduling a job so that the agent observes each
state transition.

The formulation of our problem is based on a single pool of
resources, this means that the overall machine level isolation
has been removed. Practically, cloud clusters make scheduling
decisions per machine, so each agent bases its allocation
to a collection of cloud servers. Furthermore, all the jobs
considered in this model are parallely executable as noted in
Section I. These jobs may have different stages of execution.
Additionally, the resource requirements of each job may not
be known in advance. In such circumstances, the current
model of resource assignments cannot provide an accurate
prediction which would affect the provider profit adversely.
In the future, we intend to explore the uncertainty of profit
growth with different job models. This would further showcase
the robustness of RL approaches.

VI. CONCLUSION

In this paper, a reinforcement learning (RL) technique to
detect spikes and balance the load in cloud systems has
been proposed. The preliminary evaluation shows that the
agent which is controlled by the burst index policy (BIP)
produces comparable or better results than the state-of-the-art
techniques. Consistent drops in average wait times and over
five times shorter wait times for bursty workloads over 150%
have been observed. It is evident from the experiments that
the “learning” strategies are more inclined towards gaining
experience proportional to the failures observed by the agent.
In this model, we employ the standard Q-learning based
strategy for learning. As our framework is firmly rooted on
the direct experience rather than on gaining prior knowledge,
it is imperative that our framework can be used in different
scenarios just by changing the reward metrics. Such models
could provide practical solutions to cloud data center workload
management. In the future it will be a worthwhile endeavour

to analyse how such techniques can be used in vehicular
environments such as [21] for improving congestion related
challenges in networks.

REFERENCES

[1] “CBRE Research Reports,” https://www.cbre.us/research-and-
reports/North-America-Data-Center-Trends-H2-2018.

[2] “Data centre reports,” https://datacenterfrontier.com/the-eight-trends-
that-will-shape-the-data-center-industry-in-2019/.

[3] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ULL) networks:
The IEEE TSN and IETF DetNet standards and related 5G ULL
research,” IEEE Comm. S. & T., vol. 21, no. 1, pp. 88–145, 2019.

[4] Z. Xiang, F. Gabriel, E. Urbano, G. T. Nguyen, M. Reisslein, and F. H.
Fitzek, “Reducing latency in virtual machines: Enabling tactile Internet
for human-machine co-working,” IEEE J. Sel. Areas Commun., vol. 37,
no. 5, pp. 1098–1116, 2019.

[5] F. Larumbe and B. Sanso, “Elastic, on-line and network aware virtual
machine placement within a data center,” in Proc. IFIP/IEEE Symp. on
Integr. Network and Service Managm. (IM), May 2017, pp. 28–36.

[6] W. Wang, Y. Bai, C. Yu, Y. Gu, P. Feng, X. Wang, and R. Wang, “A
network traffic flow prediction with deep learning approach for large-
scale metropolitan area network,” in Proc. IEEE/IFIP Netw. Operations
and Management Symp., April 2018, pp. 1–9.

[7] J. C. Gittins, “Bandit processes and dynamic allocation indices,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 41, no. 2,
pp. 148–164, 1979.

[8] J. Tai, J. Zhang, J. Li, W. Meleis, and N. Mi, “ArA: Adaptive resource
allocation for cloud computing environments under bursty workloads,”
in Proc. IEEE Int. Perf. Comp. and Comm. Conf., Nov 2011, pp. 1–8.

[9] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” in Proc. Int. Conf. on
Neural Information Proc. Sys., 1993.

[10] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting congestion control for consistent high performance,” in
Proc. USENIX NSDI, May 2015, pp. 395–408.

[11] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proc. ACM SIG-
COMM, 2014, pp. 455–466.

[12] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. Eu. Conf. on Computer Sys.,
2010, pp. 265–278.

[13] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. ACM Workshop on
Hot Topics in Networks, 2016, pp. 50–56.

[14] A. S. Jacobs, R. J. Pfitscher, R. L. d. Santos, M. F. Franco, E. J. Scheid,
and L. Z. Granville, “Artificial neural network model to predict affinity
for virtual network functions,” in Proc. IEEE/IFIP Network Operations
and Management Symp., April 2018, pp. 1–9.

[15] M. Wang, T. Madhyastha, N. H. Chan, S. Papadimitriou, and C. Falout-
sos, “Data mining meets performance evaluation: fast algorithms for
modeling bursty traffic,” in Proc. Int. Conf. on Data Engineering, Feb
2002, pp. 507–516.

[16] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-
similar nature of ethernet traffic,” ACM SIGCOMM Computer Commun.
Rev., vol. 23, no. 4, pp. 183–193, 1993.

[17] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf, “Optimal scheduling
and exact response time analysis for multistage jobs,” arXiv preprint
arXiv:1805.06865, 2018.

[18] R. Meshram, D. Manjunath, and A. Gopalan, “On the Whittle index
for restless multiarmed hidden markov bandits,” IEEE Transactions on
Automatic Control, vol. 63, no. 9, pp. 3046–3053, Sep. 2018.

[19] P. Varaiya, J. Walrand, and C. Buyukkoc, “Extensions of the multiarmed
bandit problem: The discounted case,” IEEE Transactions on Automatic
Control, vol. 30, no. 5, pp. 426–439, May 1985.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2018.

[21] M. Aloqaily, V. Balasubramanian, F. Zaman, I. Al Ridhawi, and
Y. Jararweh, “Congestion mitigation in densely crowded environments
for augmenting qos in vehicular clouds,” in Proc. ACM Symp. on Design
and Analysis of Intelligent Veh. Netw. and Appl., 2018, pp. 49–56.

